PolySpace® Products for C 7
User’s Guide

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

PolySpace® Products for C User’s Guide
© COPYRIGHT 1999-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 6.0 (Release 2008b)
March 2009 Online Only Revised for Version 7.0 (Release 2009a)
September 2009 Online Only Revised for Version 7.1 (Release 2009b)

March 2010 Online Only Revised for Version 7.2 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction to PolySpace Products

1

Introduction to PolySpace Products
The Value of PolySpace Verification
How PolySpace Verification Works
Product Componentscc i,
Installing PolySpace Products
Related Products 0.,

PolySpace Documentation
AboutthisGuidettt
Related Documentation

1-2

1-4
1-6

1-6

1-8

1-8

How to Use PolySpace Software

2

PolySpace Verification and the Software Development
Cycle ...
Software Quality and Productivity
Best Practices for Verification Workflow

Implementing a Process for PolySpace Verification ...
Overview of the PolySpace Process
Defining Quality Objectivesccouiiuneenn.
Defining a Verification Process to Meet Your Objectives ..
Applying Your Verification Process to Assess Code

Qualityiiiii e e
Improving Your Verification Process

Sample Workflows for PolySpace Verification
Overview of Verification Workflows
Software Developers and Testers — Standard Development

Process e

2-2

2-3

2-4

2-5
2-10

2-11
2-11

2-12
2-12

2-13

iii

Software Developers and Testers — Rigorous Development
Process ... o e
Quality Engineers — Code Acceptance Criteria
Quality Engineers — Certification/Qualification
Model-Based Design Users — Verifying Generated Code . .
Project Managers — Integrating PolySpace Verification
with Configuration Management Tools

Setting Up a Verification Project

3

Creating a Project,
What Is a Project?
Project Folders,
Opening PolySpace Launcher
Specifying Default Folder
Creating New Projects
Opening Existing Projectsccuiiii...
Specifying Source Files
Specifying Include Folders
Specifying Results Folder
Specifying Analysis Optionscovviieeneeenn...
Configuring Text and XML Editors
Saving the Project

Specifying Options to Match Your Quality
Objectives i e
Quality Objectives OVerviewc.oeeeeeneeennnn.
Choosing Contextual Verification Options
Choosing Strict or Permissive Verification Options
Choosing Coding Rules

Setting Up Project to Check Coding Rules
PolySpace MISRA Checker Overview
Checking Compliance with MISRA C Coding Rules
Creatinga MISRACRulesFile
Excluding Files from the MISRA C Checking

Setting Up Project for Generic Target Processors

iv Contents

3-2
3-3
3-3
3-6
3-7
3-9
3-9
3-12
3-14
3-15
3-16
3-18

3-19
3-19
3-19
3-21
3-23

3-25
3-25
3-25
3-27
3-29

3-31

Project Model Files 3-31

Creating Project Model Files 3-32
Viewing Existing Generic Targets 3-32
Defining Generic Targetsccciiiiia.. 3-33
Deleting a Generic Target 3-36
Creating a Configuration File from a PolySpace Project

Model File i, 3-36

Setting up Project to Automatically Test Orange

Code ... o 3-38
PolySpace Automatic Orange Tester 3-38
Enabling the Automatic Orange Tester 3-38

Emulating Your Runtime Environment

4 |

Setting UpaTargetc.00 0., 4-2
Target/Compiler Overviewc.ccvuuuuunnn. 4-2
Specifying Target/Compilation Parameters 4-3
Predefined Target Processor Specifications 4-4
Modifying Predefined Target Processor Attributes 4-7
Defining Generic Target Processors 4-9
Common Generic Targets, 4-10
Viewing Existing Generic Targets 4-11
Deleting a Generic Target 4-12
Compiling Operating System Dependent Code (OS-target

ISSUELS) vt vttt ettt e e 4-13
Address Alignment 4-17
Ignoring or Replacing Keywords Before Compilation 4-18
Verifying Code That Uses KEIL or IAR Dialects 4-20
How to Gather Compilation Options Efficiently 4-28

Verifying an Application Without a “Main” 4-30
Main Generator Overviewccouiueeeennnn. 4-30
Automatically Generatinga Main 4-31
Manually Generatinga Main 4-31

Main Generator Assumptionscoiiininn... 4-32

vi

Contents

Specifying Data Ranges for Variables and Functions
(Contextual Verification)
Overview of Data Range Specifications (DRS)
Specifying Data Ranges Using DRS Template
DRS Configuration Settings
Specifying Data Ranges Using Existing DRS

Configurationiiiiiiiiia.
Editing Existing DRS Configuration
Specifying Data Ranges Using Text Files
Variable Scope
Performing Efficient Module Testing with DRS
Reducing Oranges with DRS

Preparing Source Code for Verification

5

Stubbing
Stubbing Overviewc.iiiiiiiin
Manual vs. Automatic Stubbing
Adding Precision Constraints Using Stubs
Default and Alternative Behavior for Stubbing (PURE and

WORST) .o
Function Pointer Casesciiiiiiiinno...
Stubbing Functions with a Variable Argument Number ..
Finding Bugs in _polyspace_stdstubs.c

Preparing Code for Variables
Assigning Ranges to Variables/Assert?
Checking Properties on Global Variables: Global Assert ..
Modeling Variable Values External to Your Application ..
Initializing Variables
Verifying Code with Undefined or Undeclared Variables

and Functions i

Preparing Code for Built-In Functions

Preparing Multitasking Code
PolySpace Software Assumptions
Modelling Synchronous Tasks

Modelling Interruptions and Asynchronous Events, Tasks,

6

andThreads i, 5-22
Are Interruptions Maskable or Preemptive by Default? ... 5-24
Shared Variables i, 5-26
MailboXes .. ovvii it e e 5-29
Atomicity (Can an Instruction Be Interrupted by
Another?) e 5-31
Priorities ... e e e 5-33
Highlighting Known Coding Rule Violations and
Run-Time Errors iiiiin... 5-34
Annotating Code to Indicate Known Coding Rule
Violations . ..ottt e e 5-34
Annotating Code to Indicate Known Run-Time Errors 5-36
Verifying “Unsupported” Code 5-39
Ignoring Assembly Code, 5-39
Dealing with Backward “goto” Statements 5-47
Types Promotion iiiiiiiiennnnnnn. 5-50
Running a Verification
Types of Verification 6-2
Running Verifications on PolySpace Server 6-3
Starting Server Verification 6-3
What Happens When You Run Verification 6-4
Running Verification Unit-by-Unit 6-5
Managing Verification Jobs Using the PolySpace Queue
Manager e 6-7
Monitoring Progress of Server Verification 6-8
Viewing Verification Log File on Server 6-11
Stopping Server Verification Before It Completes 6-13
Removing Verification Jobs from Server Before They
Run ... e 6-14
Changing Order of Verification Jobs in Server Queue 6-15
Purging Server Queue 6-16
Changing Queue Manager Password 6-18

vii

viii

Contents

Sharing Server Verifications Between Users 6-18

Running Verifications on PolySpace Client 6-22
Starting Verificationon Client 6-22
What Happens When You Run Verification 6-23
Monitoring the Progress of the Verification 6-24
Stopping Client Verification Before It Completes 6-25

Running Verifications from Command Line 6-27
Launching Verificationsin Batch 6-27
Managing Verificationsin Batch 6-27

Troubleshooting Verification Problems

7

Verification Process Failed Errors 7-2
Messages Described in This Section 7-2
Hardware Does Not Meet Requirements 7-2
You Did Not Specify the Location of Included Files 7-3
PolySpace Software Cannot Find the Server 7-4
Limit on Assignments and Function Calls 7-6

Compilation Exrrors 7-7
L0 =) T 1= 7-7
Configuring a Text Editor 7-8
Examining the Compile Log 7-8
Compiler Messages Described in This Section 7-10
Syntax Error e 7-10
Undeclared Identifiercciiiiia.. 7-11
No Such Fileor Folder 7-12
Herror directivettt e e 7-13
Errors Resulting from Unsupported Non-ANSI Keywords

Such as @interruptcciiiiiiii.. 7-14

Link Errors and Warnings 7-16
L0 =) T 1= 7-16
Function: Wrong Argument Type 7-17
Function: Wrong Argument Number 7-17
Variable: Wrong Type 7-18

Variable: Signed/Unsignedcccoveeivnn.. 7-18

Variable: Different Qualifier 7-19
Variable: Array Against Variable 7-19
Variable: Wrong Array Sizeccoiiiininn... 7-20
Missing Required Prototype for varargs 7-20
Stubbing Exrorsc.0iiiiiiii i 7-22
Conflicts Between Standard Library Functions and
PolySpace Stubs 7-22
_polyspace_stdstubs.c Compilation Errors 7-22
General Troubleshooting Approaches 7-24
Restart with the -Ioption 7-24

Include Files with Stubs to Replace Automatic Stubbing .. 7-25
Create a _polyspace_stdstubs.c File with Necessary

Includes ... i e 7-26
Provide a .c file Containing a Prototype Function 7-27
Ignore _polyspace_stdstubs.c 7-28

Automatic Stub Creation Exrrors 7-29
Three Types of Error Messages 7-29
Function Pointer Error 7-29
Unknown Prototype Exrror 7-31
Parameter -entry-points Error 7-31

Reducing Verification Time 7-32
Factors Impacting Verification Time 7-32
Displaying Verification Status Information 7-33
Techniques for Improving Verification Performance 7-34
Turning Antivirus Software Off 7-36
Tuning PolySpace Parameters 7-36
Subdividing Code ... 7-37
Reducing Procedure Complexity 7-47
Reducing Task Complexity, 7-49
Reducing Variable Complexity 7-50
Choosing Lower Precisioncoiiiuieeeeo... 7-50

Obtaining Configuration Information 7-51

Removing Preliminary Results Files 7-53

Reviewing Verification Results

8

Before You Review PolySpace Results 8-2
Overview: Understanding PolySpace Results 8-2
Why Gray Follows Red and Green Follows Orange 8-3
The Message and What It Means 8-4
The C Explanationcciiuiiiiiiinnnnnnn. 8-5

Opening Verification Results 8-8
Downloading Results from Server to Client 8-8
Downloading Server Results Using Command Line 8-11
Downloading Results from Unit-by-Unit Verifications 8-12
Opening Verification Results 8-12
Exploring the Viewer Window 8-13
Selecting Viewer Mode, 8-23
Searching Results in Viewer 8-23
Setting Character Encoding Preferences 8-24

Reviewing Results in Assistant Mode 8-26
What Is Assistant Mode?, 8-26
Switching to Assistant Mode 8-26
Selecting the Methodology and Criterion Level 8-27
Exploring Methodology for C 8-28
Defining a Custom Methodology 8-30
Reviewing Checksciiiiiininnnnnnn. 8-32
Saving Review Commentscccvuu... 8-34

Reviewing Results in Expert Mode 8-36
What Is Expert Mode? i, 8-36
Switching to Expert Mode 8-36
Selecting a Checkto Review 8-36
Displaying the Call Sequence for a Check 8-40
Displaying the Access Graph for Variables 8-41
Filtering Checksottt 8-42
Typesof Filters, 8-43
Creating a Custom Filter 8-44
Saving Review Commentscocvun... 8-46

Tracking Review Progress 8-47
Checking Coding Review Progress 8-47

X Contents

Reviewing and Commenting Checks 8-48

Defining Custom Acronymsccevviennnnnn. 8-49
Tracking Reviewed Checks in Procedural Entities View .. 8-51
Importing and Exporting Review Comments 8-53
Reusing Review Comments 8-53
Exporting Review Comments to Other Verification
Results ... e 8-54
Importing Review Comments from Previous
Verificationsoiiiiiiiieiinnninnne.. 8-54
Viewing Checks and Comments Report 8-55
Generating Reports of Verification Results 8-58
PolySpace Report Generator Overview 8-58
Generating Verification Reports 8-59
Running the Report Generator from the Command Line .. 8-61
Automatically Generating Verification Reports 8-62
Generating Excel Reports 8-63
Using PolySpace Results 8-67
Review Runtime Errors: Fix Red Exrrors 8-67
Red Checks Where Gray Checks were Expected 8-68
Using Range Information in the Viewer 8-70
Using Pointer Information in the Viewer 8-76
Why Review Dead Code Checks 8-79
Reviewing Orange Checks 8-81
Integration Bug Tracking 8-81
How to Find Bugs in Unprotected Shared Data 8-82
Dataflow Verification, 8-83
Dataand CodingRules 8-83
Potential Side Effect of a Red Error 8-84
Relationships Between Variables 8-85
Two Distinct Colors in a while/for Statement 8-86

Managing Orange Checks

9

Understanding Orange Checks 9-2
What is an Orange Check? 9-2

xi

Sources of Orange Checkscciiiii... 9-6

Too Many Orange Checks? 9-12
Do I Have Too Many Orange Checks? 9-12
How to Manage Orange Checks 9-13

Reducing Orange Checks in Your Results 9-14
Overview: Reducing Orange Checks 9-14
Applying Coding Rules to Reduce Orange Checks 9-15
Considering Generated Code 9-20
Improving Verification Precision 9-21
Stubbing Parts of the Code Manually 9-26
Describing Multitasking Behavior Properly 9-28
Considering Contextual Verification 9-29

Reviewing Orange Checks 9-30
Overview: Reviewing Orange Checks 9-30
Defining Your Review Methodology 9-30
Performing Selective Orange Review 9-32
Importing Review Comments from Previous

Verificationsoiiiiiiiiie .. 9-35
Commenting Code to Provide Information During

Review ... i e 9-36
Working with Orange Checks Caused by Input Data 9-37
Performing an Exhaustive Orange Review 9-39

Automatically Testing Orange Code 9-43
Automatic Orange Tester Overview 9-43
Before Using the Automatic Orange Tester 9-46
Launching the Automatic Orange Tester 9-48
Reviewing the Test Results 9-52
Refining Data Ranges, 9-56
Saving and Reusing Your Configuration 9-60
Exporting Data Ranges for PolySpace Verification 9-61
Configuring Compiler Optionsccvvuve.... 9-62
Technical Limitations, 9-63

xii Contents

Day to Day Use

10

PolySpace In One Click Overview 10-2
Using PolySpace InOne Click 10-3
PolySpace In One Click Workflow 10-3
Setting the Active Project 10-3
Launching Verification, 10-5
Using the TaskbarIcon 10-9

11

PolySpace MISRA Checker Overview 11-2
Setting Up MISRA C Checking 114
Checking Compliance with MISRA C Coding Rules 114
Creating a MISRACRulesFile 11-5
Excluding Files from the MISRA C Checking 11-7
Configuring Text and XML Editors 11-8

Commenting Code to Indicate Known Rule Violations 11-9

Running a Verification with MISRA C Checking 11-11
Starting the Verificationcivv.... 11-11
Examining the MISRACLogcii... 11-12
Opening MISRA-CReport, 11-14

Rules Supported, 11-16
Language Extensions, 11-17
Character Setscciiiiiiiiiiii e, 11-17
Identifiers i e 11-18
TYPeS vttt e 11-19
Constantsttt e e 11-20
Declarations and Definitions 11-20
Initializationt e 11-23
Arithmetic Type Conversionc.ovvuuuuee... 11-23
Pointer Type Conversionc.ccueeevnnnnnnn. 11-27

xiii

xiv

EXpressionsiiiiiiiii e e e 11-28

Control Statement Expressions 11-31
Control Flow i, 11-32
Switch Statements, 11-34
Functions 11-35
Pointers and Arrays i 11-36
Structures and Unionscoiiiiiinneennn... 11-36
Preprocessing Directives, 11-37
Standard Librariesc.iiiiiinnnenn.. 11-40
runtime Failures 11-42
Rules Partially Supported 11-43
Environment 11-43
Language Extensionciiiiinnnn. 11-44
Declarations and Definitions 11-45
Expressions e e 11-46
Control Statement Expressions 11-47
Control Flow i, 11-49
Functions 11-50
Pointers and Arrays i 11-50
Preprocessing Directives, 11-51
Rules Not Checked oo, 11-54
Environment 11-54
Language Extensions0viiiiiinnnn. 11-55
Documentation i 11-55
PSS vttt e 11-56
Functions 11-57
Pointers and Arrays 11-57
Structures and Unionscciiiiiieneeenn... 11-58
Standard Librariesc.ciiiiiiiinen.. 11-58

Using PolySpace Software in the Eclipse IDE

12

Contents

Verifying Code in the EclipseIDE 12-2
Creating an Eclipse Project 12-3
Setting Up PolySpace Verification with Eclipse Editor ... 12-4
Launching Verification from Eclipse Editor 12-5
Reviewing Verification Results from Eclipse Editor 12-5

Using the PolySpace Spooler

Glossary

Index

XV

xvi Contents

Introduction to PolySpace
Products

® “Introduction to PolySpace Products” on page 1-2

® “PolySpace Documentation” on page 1-8

Introduction to PolySpace® Products

Introduction to PolySpace Products

In this section...

“The Value of PolySpace Verification” on page 1-2
“How PolySpace Verification Works” on page 1-4
“Product Components” on page 1-6

“Installing PolySpace Products” on page 1-6

“Related Products” on page 1-6

The Value of PolySpace Verification

PolySpace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. PolySpace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

PolySpace verification can help you to:

e “Ensure Software Reliability” on page 1-2
® “Decrease Development Time” on page 1-3

* “Improve the Development Process” on page 1-4

Ensure Software Reliability

PolySpace software ensures the reliability of your C applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, PolySpace software performs an exhaustive verification of your
source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

® Never has an error

® Always has an error

® Js unreachable

Introduction to PolySpace® Products

® Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

You can also improve the quality of your code by using PolySpace verification
software to check that your code complies with MISRA C® standards.'

Decrease Development Time

PolySpace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process, but using it during early coding
phases allows you to find errors when it is less costly to fix them.

You use PolySpace software to verify C source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

¢ Green — Indicates code that never has an error.

® Red — Indicates code that always has an error.

¢ Gray — Indicates unreachable code.

¢ Orange — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time

debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-3

Introduction to PolySpace® Products

1-4

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improve the Development Process

PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.

® Quality assurance can check overall reliability of an application.

¢ Managers can monitor application reliability by generating reports from
the verification results.

How PolySpace Verification Works

PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

What is Static Verification

Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. PolySpace verification

Introduction to PolySpace® Products

provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable I’ never overflows the range of 'tab’ a traditional
approach would be to enumerate each possible value of '1’. One thousand
checks would be needed.

Using the static verification approach, the variable '1’ is modelled by its
variation domain. For instance the model of '1’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,

the information that ’1’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of 1’ is smaller than the range of ’tab’. Only one check is required

to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by PolySpace verification.

1-5

Introduction to PolySpace® Products

Product Components

The PolySpace products for verifying C code are combined with the PolySpace
products for verifying C++ code. These products are:

e “PolySpace® Client for C/C++ Software” on page 1-6
e “PolySpace® Server for C/C++ Software” on page 1-6

PolySpace Client for C/C++ Software

PolySpace® Client™ for C/C++ software is the management and visualization
tool of PolySpace products. You use it to submit jobs for execution by
PolySpace Server, and to review verification results. The PolySpace client
software includes the Viewer, DRS, MISRA C Checker, Report Generator, and
Automatic Orange Tester features.

PolySpace client software is typically installed on developer workstations that
will send verification jobs to the PolySpace server.

PolySpace Server for C/C++ Software

PolySpace® Server™ for C/C++ software is the computational engine of

PolySpace products. You use it to run jobs posted by PolySpace clients, and to
manage multiple servers and queues. The PolySpace Server software includes
the Remote Launcher, Report Generator, DRS, and HTML Generator features.

PolySpace server software is typically installed on machines dedicated to
PolySpace software that will receive verifications coming from PolySpace
clients.

Installing PolySpace Products

For information on installing and licensing PolySpace products, refer to the
PolySpace Installation Guide.

Related Products

® “PolySpace Products for Verifying C++ Code” on page 1-7
e “PolySpace Products for Verifying Ada Code” on page 1-7

Introduction to PolySpace® Products

e “PolySpace Products for Linking to Models” on page 1-7

PolySpace Products for Verifying C++ Code

For information about PolySpace products that verify C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code

For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models

For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products

PolySpace Documentation

In this section...
“About this Guide” on page 1-8

“Related Documentation” on page 1-8

About this Guide

This document describes how to use PolySpace software to verify C code, and
provides detailed procedures for common tasks. It covers both PolySpace
Client for C/C++ and PolySpace Server for C/C++ products.

This guide is intended for both novice and experienced users.

Related Documentation

In addition to this guide, the following related documents are shipped with
the software:

® PolySpace Products for C Getting Started Guide — Provides a basic
workflow and step-by-step procedures for verifying C code using PolySpace
software, to help you quickly learn how to use the software.

® PolySpace Products for C Reference — Provides detailed descriptions
of all PolySpace options, as well as all checks reported in the PolySpace
results.

® PolySpace Installation Guide — Describes how to install and license
PolySpace products.

® PolySpace Release Notes — Describes new features, bug fixes, and
upgrade issues.

You can access these guides from the Help menu, or by or clicking the Help
icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

PolySpace® Documentation

The MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to PolySpace® Products

1-10

How to Use PolySpace
Software

e “PolySpace Verification and the Software Development Cycle” on page 2-2
¢ “Implementing a Process for PolySpace Verification” on page 2-4

e “Sample Workflows for PolySpace Verification” on page 2-12

2 How fo Use PolySpace® Software

2-2

PolySpace Verification and the Software Development

Cycle

In this section...

“Software Quality and Productivity” on page 2-2

“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity

The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are always three
related variables: cost, quality, and time.

Cost Time

Quality

Changing the requirements for one of these variables always impacts the
other two.

Generally, the criticality of your application determines the balance between
these three variables — your quality model. With classical testing processes,
development teams generally try to achieve their quality model by testing
all modules in an application until each meets the required quality level.
Unfortunately, this process often ends before quality objectives are met,
because the available time or budget has been exhausted.

PolySpace verification allows a different process. PolySpace verification can
support both productivity improvement and quality improvement at the same
time, although there is always a balance between these goals.

To achieve maximum quality and productivity, however, you cannot simply
perform code verification at the end of the development process. You must

integrate verification into your development process, in a way that respects
time and cost restrictions.

PolySpace Verification and the Software Development Cycle

This chapter describes how to integrate PolySpace verification into your
software development cycle. It explains both how to use PolySpace verification
in your current development process, and how to change your process to get
more out of verification.

Best Practices for Verification Workflow

PolySpace verification can be used throughout the software development
cycle. However, to maximize both quality and productivity, the most efficient
time to use it 1s early in the development cycle.

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

.
PolySpace®

Code Code
Analysis Verification

PolySpace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is
written, to check coding rules and quickly identify any obvious defects. Once
the code 1s stable, you verify it again before module/unit testing, with more
stringent verification and review criteria.

Using verification early in the development cycle improves both quality and
productivity, because it allows you to find and manage defects soon after the
code is written. This saves time because each user is familiar with their own
code, and can quickly determine why code cannot be proven safe. In addition,
defects are cheaper to fix at this stage, since they can be addressed before the
code is integrated into a larger system.

2-3

2 How fo Use PolySpace® Software

2-4

Implementing a Process for PolySpace Verification

In this section...

“Overview of the PolySpace Process” on page 2-4
“Defining Quality Objectives” on page 2-5
“Defining a Verification Process to Meet Your Objectives” on page 2-10

“Applying Your Verification Process to Assess Code Quality” on page 2-11

“Improving Your Verification Process” on page 2-11

Overview of the PolySpace Process

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve your own quality
goals. To do this, however, you must integrate PolySpace verification into
your development process.

To successfully implement polyspace verification within your development
process, you must perform each of the following steps:

1 Define your quality objectives.
2 Define a process to match your quality objectives.
3 Apply the process to assess the quality of your code.

4 Tmprove the process.

Implementing a Process for PolySpace Verification

Defining Quality Obijectives

Before you can verify whether your code meets your quality goals, you must
define those goals. Therefore, the first step in implementing a verification
process is to define your quality objectives.

This process involves:

® “Choosing Robustness or Contextual Verification” on page 2-5

“Choosing Coding Rules” on page 2-6

® “Choosing Strict or Permissive Verification Objectives” on page 2-7

“Defining Software Quality Levels” on page 2-8

Choosing Robustness or Contextual Verification

Before using PolySpace products to verify your code, you must decide what
type of software verification you want to perform. There are two approaches
to code verification that result in slightly different workflows:

* Robustness Verification — Prove software works under all conditions.

® Contextual Verification — Prove software works under normal working
conditions.

Note Some verification processes may incorporate both robustness and
contextual verification. For example, developers may perform robustness
verification on individual files early in the development cycle, while writing
the code. Later, the team may perform contextual verification on larger
software components.

Robustness Verification. Robustness verification proves that the software
works under all conditions, including “abnormal” conditions for which it was
not designed. This can be thought of as “worst case” verification.

By default, PolySpace software assumes you want to perform robustness
verification. In a robustness verification, PolySpace software:

® Assumes function inputs are full range

2-5

2 How fo Use PolySpace® Software

¢ Initializes global variables to full range

* Automatically stubs missing functions

While this approach ensures that the software works under all conditions,
it can lead to orange checks (unproven code) in your results. You must then
manually inspect these orange checks in accordance with your software
quality objectives.

Contextual Verification. Contextual verification proves that the software
works under predefined working conditions. This limits the scope of the
verification to specific variable ranges, and verifies the code within these
ranges.

When performing contextual verification, you use PolySpace options to reduce
the number of orange checks. For example, you can:

e Use Data Range Specifications (DRS) to specify the ranges for your
variables, thereby limiting the verification to these cases. For more
information, see “Specifying Data Ranges for Variables and Functions
(Contextual Verification)” on page 4-34.

® (Create a detailed main program to model the call sequence, instead of
using the default main generator. For more information, see “Verifying an
Application Without a “Main™ on page 4-30.

® Provide manual stubs that emulate the behavior of missing functions,
instead of using the default automatic stubs. For more information, see
“Stubbing” on page 5-2.

Choosing Coding Rules

Coding rules are one of the most efficient means to improve both the quality
of your code, and the quality of your verification results.

If your development team observes certain coding rules, the number of
orange checks (unproven code) in your verification results will be reduced
substantially. This means that there is less to review, and that the remaining
checks are more likely to represent actual bugs. This can make the cost of bug
detection much lower.

2-6

Implementing a Process for PolySpace Verification

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see Chapter 11, “MISRA Checker”.

Choosing Strict or Permissive Verification Objectives

While defining the quality objectives for your application, you should
determine which of these options you want to use.

Options that make verification more strict include:
e -detect-unsigned-overflow — Verification is more strict with overflowing

computations on unsigned integers.

® -no-def-init-glob — Verification treats all global variables as
non-initialized, therefore causing a red error if they are read before they
are written to.

® -wall — Specifies that all C compliance warnings are written to the log file
during compilation.

Options that make verification more permissive include:

® -allow-ptr-arith-on-struct — Enables navigation within a structure
or union from one field to another.

® -allow-negative-operand-in-shift — Verification allows a shift
operation on a negative number.

® -ignore-constant-overflow — Verification is permissive with overflowing
computations on constants.

® -allow-non-int-bitfields — Allows you to define types of bitfields other
than signed or unsigned int.

® -allow-undef-variables — Verification does not stop due to errors caused
by undefined global variables.

® -allow-unnamed-fields — Verification does not stop due to errors caused
by unnamed fields in structures.

2-7

2 How fo Use PolySpace® Software

e -dialect — Verification allows syntax associated with the IAR and Keil
dialects.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Defining Software Quality Levels

The software quality level you define determines which PolySpace options you
use, and which results you must review.

You define the quality levels appropriate for your application, from level QL-1
(lowest) to level QL-4 (highest). Each quality level consists of a set of software

quality criteria that represent a certain quality threshold. For example:

Software Quality Levels

Criteria Software Quality Levels
QL1 QL2 | QL3 | QL4

Document static information X X X X

Enforce coding rules with direct impact on X X X X

selectivity

Review all red checks X X X X

Review all gray checks X X X X

Review first criteria level for orange X X X

checks

Review second criteria level for orange X X

checks

Enforce coding rules with indirect impact X X

on selectivity

Perform dataflow analysis X X

Review third criteria level for orange X

checks

Implementing a Process for PolySpace Verification

You define the quality criteria appropriate for your application. In the
example above, the quality criteria include:

¢ Static Information — Includes information about the application
architecture, the structure of each module, and all files. This information
must be documented to ensure that your application is fully verified.

¢ Coding rules — PolySpace software can check that your code complies
with specified coding rules. The section “Applying Coding Rules to Reduce
Orange Checks” on page 9-15 defines two sets of coding rules — a first set
with direct impact on the selectivity of the verification, and a second set
with indirect impact on selectivity.

* Red checks — Represent errors that occur every time the code is executed.
® Gray checks — Represent unreachable code.

®* Orange checks — Indicate unproven code, meaning a run-time error may
occur. PolySpace software allows you to define three criteria levels for
reviewing orange checks in the PolySpace Viewer. For more information,
see “Reviewing Results in Assistant Mode” on page 8-26.

¢ Dataflow analysis — Identifies errors such as non-initialized variables and
variables that are written but never read. This can include inspection of:

= Application call tree
= Read/write accesses to global variables

= Shared variables and their associated concurrent access protection

2-9

2 How fo Use PolySpace® Software

2-10

Defining a Verification Process to Meet Your
Obijectives

Once you have defined your quality objectives, you must define a process that
allows you to meet those objectives. Defining the process involves actions both
within and outside PolySpace software.

These actions include:

¢ Communicating coding standards (coding rules) to your development team.

e Setting PolySpace Analysis options to match your quality objectives. For
more information, see “Creating a Project” on page 3-2.

® Setting review criteria in the PolySpace Viewer to ensure results are
reviewed consistently. For more information, see “Defining a Custom
Methodology” on page 8-30.

Implementing a Process for PolySpace Verification

Applying Your Verification Process to Assess Code
Quality

Once you have defined a process that meets your quality objectives, it is up to
your development and testing teams to apply it consistently to all software
components.

This process includes:

1 Launching PolySpace verification on each software component as it is
written. See “Using PolySpace In One Click” on page 10-3.

2 Reviewing verification results consistently. See “Reviewing Results in
Assistant Mode” on page 8-26.

3 Saving review comments for each component, so they are available
for future review. See “Importing Review Comments from Previous
Verifications” on page 9-35.

4 Performing additional verifications on each component, as defined by your
quality objectives.

Improving Your Verification Process

Once you review initial verification results, you can assess both the overall
quality of your code, and how well the process meets your requirements for
software quality, development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process.
These actions may include:

e Reassessing your quality objectives.

® Changing your development process to produce code that is easier to verify.

® Changing PolySpace analysis options to improve the precision of the
verification.

¢ Changing PolySpace options to change how verification results are reported.

For more information, see Chapter 9, “Managing Orange Checks”.

2-11

2 How fo Use PolySpace® Software

2-12

Sample Workflows for PolySpace Verification

In this section...

“Overview of Verification Workflows” on page 2-12

“Software Developers and Testers — Standard Development Process” on
page 2-13

“Software Developers and Testers — Rigorous Development Process” on
page 2-16

“Quality Engineers — Code Acceptance Criteria” on page 2-20
“Quality Engineers — Certification/Qualification” on page 2-23
“Model-Based Design Users — Verifying Generated Code” on page 2-24

“Project Managers — Integrating PolySpace Verification with Configuration

Management Tools” on page 2-28

Overview of Verification Workflows
PolySpace verification supports two objectives at the same time:

¢ Reducing the cost of testing and validation
¢ Improving software quality
You can use PolySpace verification in different ways depending on your

development context and quality model. The primary difference being how
you exploit verification results.

This section provides sample workflows that show how to use PolySpace
verification in a variety of development contexts.

Sample Workflows for PolySpace® Verification

Software Developers and Testers - Standard
Development Process

User Description

This workflow applies to software developers and test groups using a standard
development process. Before implementing PolySpace verification, these
users fit the following criteria:

® In Ada, no unit test tools or coverage tools are used — functional tests are
performed just after coding.

¢ In C, either no coding rules are used, or rules are not followed consistently.

Quality Obijectives

The main goal of PolySpace verification is to improve productivity while
maintaining or improving software quality. Verification helps developers
and testers find and fix bugs more quickly than other processes. It also
improves software quality by identifying bugs that otherwise might remain
in the software.

In this process, the goal is not to completely prove the absence of errors. The
goal is to deliver code of equal or better quality that other processes, while
optimizing productivity to ensure a predictable time frame with minimal
delays and costs.

Verification Workflow

This process involves file-by-file verification immediately after coding, and
again just before functional testing.

2-13

2 How fo Use PolySpace® Software

2-14

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

=
PolySpace®

Code Verification

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform robustness
verification, using default PolySpace options.

Note This means that verification uses the automatically generated
“main” function. This main will call all unused procedures and functions
with full range parameters.

2 Each developer performs file-by-file verification as they write code, and
reviews verification results.

3 The developer fixes all red errors and examines gray code identified by
the verification.

4 The developer repeats steps 2 and 3 as needed, while completing the code.
5 Once a developer considers a file complete, they perform a final verification.

6 The developer fixes any red errors, examines gray code, and performs
a selective orange review.

Sample Workflows for PolySpace® Verification

Note The goal of the selective orange review is to find as many bugs as
possible within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked
oranges. However, the verification process represents a significant
improvement from other testing methods.

Costs and Benefits
When using verification to detect bugs:

¢ Red and gray checks — Reviewing red and gray checks provides a quick
method to identify real run-time errors in the code.

¢ Orange checks — Selective orange review provides a method to identify
potential run-time errors as quickly as possible. The time required to
find one bug varies from 5 minutes to 1 hour, and is typically around 30
minutes. This represents an average of two minutes per orange check
review, and a total of 20 orange checks per package in Ada and 60 orange
checks per file in C.

Disadvantages to this approach:

¢ Number of orange checks - If you do not use coding rules, your
verification results will contain more orange checks.

¢ Unreviewed orange checks — Some bugs may remain in unchecked
oranges.

2-15

2 How fo Use PolySpace® Software

2-16

Software Developers and Testers - Rigorous
Development Process

User Description

This workflow applies to software developers and test engineers working
within development groups. These users are often developing software for
embedded systems, and typically use coding rules.

These users typically want to find bugs early in the development cycle using a
tool that is fast and iterative.

Quality Obijectives

The goal of PolySpace verification is to improve software quality with equal or
increased productivity.

Verification can prove the absence of runtime errors, while helping developers
and testers find and fix any bugs more quickly than other processes.

Verification Workflow

This process involves both code analysis and code verification during the
coding phase, and thorough review of verification results before module
testing. It may also involve integration analysis before integration testing.

Sample Workflows for PolySpace® Verification

Integration Testing

f ¥

Textual _| Application | Module | %_ Hand-written|#” | Object
Requirements| | Design "] Design " Code " Code

Writing
Code

Compilation
and Linking

[] Development Artifact
@ Software Development Activity

Verification of
C and C++ Code

Workflow for Code Verification

Note Solid arrows in the figure indicate the progression of software
development activities.

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform contextual
verification. This involves:

¢ Using Data Range Specifications (DRS) to define initialization ranges
for input data. For example, if a variable “x” is read by functions in
the file, and if x can be initialized to any value between 1 and 10, this
information should be included in the DRS file.

¢ Creates a “main” program to model call sequence, instead of using the
automatically generated main.

® Sets options to check the properties of some output variables. For
example, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace
can flag instances where that range of values might be breached.

2-17

2 How fo Use PolySpace® Software

2-18

2 The project leader configures the project to check appropriate coding rules.

3 Each developer performs file-by-file verification as they write code, and
reviews both coding rule violations and verification results.

4 The developer fixes any coding rule violations, fixes all red errors,
examines gray code, and performs a selective orange review.

5 The developer repeats steps 2 and 3 as needed, while completing the code.
6 Once a developer considers a file complete, they perform a final verification.

7 The developer or tester performs an exhaustive orange review on the
remaining orange checks.

Note The goal of the exhaustive orange review is to examine all orange
checks that were not reviewed as part of previous reviews. This is possible
when using coding rules because the total number of orange checks is
reduced, and the remaining orange checks are likely to reveal problems
with the code.

Optionally, an additional verification can be performed during the integration
phase. The purpose of this additional verification is to track integration bugs,
and review:

® Red and gray integration checks;

® The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits

With this approach, PolySpace verification typically provides the following
benefits:

* Fewer orange checks in the verification results (improved selectivity). The
number of orange checks is typically reduced to 3-5 per file, yielding an
average of 1 bug. Often, several of the orange checks represent the same
bug.

Sample Workflows for PolySpace® Verification

® Fewer gray checks in the verification results.

e Typically, each file requires two verifications before it can be checked-in to
the configuration management system.

® The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the
data flow design, the benefits might be greater. Using data rules reduces
the potential of verification finding integration bugs.

If performing the optional verification to find integration bugs, you may see
the following results. On a typical 50,000 line project:

® A selective orange review may reveal one integration bug per hour
of code review.

e Selective orange review takes about 6 hours to complete. This is long
enough to review orange checks throughout the whole application. This
represents a step towards an exhaustive orange check review. However,
spending more time is unlikely to be efficient, and will not guarantee that
no bugs remain.

® An exhaustive orange review would take between 4 and 6 days, assuming
that 50,000 lines of code contains approximately 400—800 orange checks.
Exhaustive orange review is typically recommended only for high-integrity
code, where the consequences of a potential error justify the cost of the
review.

2-19

2 How fo Use PolySpace® Software

2-20

Quality Engineers - Code Acceptance Criteria

User Description

This workflow applies to quality engineers who work outside of software
development groups, and are responsible for independent verification of
software quality and adherence to standards.

These users generally receive code late in the development cycle, and may
even be verifying code that is written by outside suppliers or other external
companies. They are concerned with not just detecting bugs, but measuring
quality over time, and developing processes to measure, control, and improve
product quality going forward.

Quality Obijectives

The main goal of PolySpace verification is to control and evaluate the safety
of an application.

The criteria used to evaluate code can vary widely depending on the criticality
of the application, from no red errors to exhaustive oranges review. Typically,
these criteria become increasingly stringent as a project advances from early,
to intermediate, and eventually to final delivery.

For more information on defining these criteria, see “Defining Software
Quality Levels” on page 2-8.

Verification Workflow

This process usually involves both code analysis and code verification before
validation phase, and thorough review of verification results based on defined
quality objectives.

Sample Workflows for PolySpace® Verification

Requirements Validation Testing

Original = a

Equipment PolySpace
Manufacturer
Code Verification

Functional Design Integration Testing

Sub-contractor]|
Coding Module Testing

Note Verification is often performed multiple times, as multiple versions of
the software are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality objectives for the code to be
written, including specific quality levels for each version of the code to be
delivered (first, intermediate, or final delivery) For more information, see
“Defining Quality Objectives” on page 2-5.

2 Development group writes code according to established standards.

3 Development group delivers software to the quality engineering group.

4 The project leader configures the PolySpace project to meet the defined
quality objectives, as described in “Defining a Verification Process to Meet
Your Objectives” on page 2-10.

5 Quality engineers perform verification on the code.

6 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the process.

2-21

2 How fo Use PolySpace® Software

2-22

Note The number of orange checks reviewed often depends on the version
of software being tested (first, intermediate, or final delivery). This can be
defined by quality level (see “Defining Software Quality Levels” on page
2-8).

7 Quality engineers create reports documenting the results of the verification,
and communicate those results to the supplier.

8 Quality engineers repeat steps 5—7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other
verification processes, but the cost of correcting faults is higher, because
verification takes place late in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the
cost of doing so can be high. If you want to review all orange checks at this
phase, it is important to use development and verification processes that
minimize the number of orange checks. This includes:

® Developing code using strict coding and data rules.

¢ Providing accurate manual stubs for all unresolved function calls.

¢ Using DRS to provide accurate data ranges for all input variables.

Taking these steps will minimize the number of orange checks reported by the

verification, and make it likely that any remaining orange checks represent
true issues with the software.

Sample Workflows for PolySpace® Verification

Quality Engineers - Certification/Qualification

User Description

This workflow applies to quality engineers who work with applications
requiring outside quality certification, such as IEC 61508 certification or
DO-178B qualification.

These users must perform a set of activities to meet certification requirements.
For information on using PolySpace products within an IEC 61508

certification environment, see the IEC Certification Kit: Verification of C and
C++ Code Using PolySpace Products.

For information on using PolySpace products within an DO-178B qualification
environment, see the DO Qualification Kit: PolySpace Client/Server for
C/C++ Tool Qualification Plan.

2-23

2 How fo Use PolySpace® Software

2-24

Model-Based Design Users — Verifying Generated
Code

User Description

This workflow applies to users who have adopted model-based design to
generate code for embedded application software.

These users generally use PolySpace software in combination with several
other Mathworks products, including Simulink, Real-Time Workshop
Embedded Coder, and Simulink Design Verifier. In many cases, these
customers combine application components that are hand-written code with
those created using generated code.

Quality Obijectives

The goal of PolySpace verification is to improve the quality of the software by
identifying implementation issues in the code, and ensuring the code is both
semantically and logically correct.

PolySpace verification allows you to find run time errors:

¢ In hand-coded portions within the generated code
¢ In the model used for production code generation

¢ In the integration of hand-written and generated code

Sample Workflows for PolySpace® Verification

Verification Workflow

The workflow is different for hand-written code, generated code, and mixed
code. PolySpace products can perform code verification as part of any of these

workflows. The following figure shows a suggested verification workflow for
hand-written and mixed code.

Integration Testing

Code Analy5|s Code Verification

2 y . ;
Textual _| Application | Module | % |Hand-written}®
Requirements "1 Design "] Design g Code
s, :
/ . .
s Compilation Object
Pd and Link Code
P 2BNPTEEEEE o emmeee,
» Coqe'AnaIysis“.“."Code Verification
Textual _ | Executable N MfodecI:Udsed 4| Generated |£
Requirements Specification > ‘tortode Code
Generation

Code

Modeling Generation

[] Development Artifact
(@ Software Development Activity

Verification of
C and C++ Code

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software
development activities.

2-25

2 How fo Use PolySpace® Software

2-26

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to meet defined quality
objectives.

2 Developers write hand-coded sections of the application.

3 Developers or testers perform PolySpace verification on any hand-coded
sections within the generated code, and review verification results
according to the established quality objectives.

4 Developers create Simulink® model based on requirements.

5 Developers validate model to ensure it is logically correct (using tools
such as Simulink Model Advisor, and the Simulink® Verification and
Validation™ and Simulink® Design Verifier™ products).

6 Developers generate code from the model.

7 Developers or testers perform PolySpace verification on the entire
software component, including both hand-written and generated code.

8 Developers or testers review verification results according to the
established quality objectives.

Note The PolySpace Model Link™ SL product allows you to quickly track
any issues identified by the verification back to the appropriate block in
the Simulink model.

Sample Workflows for PolySpace® Verification

Costs and Benefits

PolySpace verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows
how errors in textual designs or executable models can appear in the resulting
code.

Examples of Common Run-Time Errors

Type of Error | Design or Model Errors Code Errors
Arithmetic ¢ Incorrect Scaling ¢ Overflows/Underflows
Crrors ® Unknown calibrations ® Division by zero

® Untested data ranges e Square root of negative numbers
Memory ® Incorrect array specification in ® QOut of bound array indexes
corruption state machines

¢ Pointer arithmetic
® Incorrect legacy code (look-up

tables)
Data ¢ Unexpected data flow ¢ Overflows/Underflows
truncation e Wrap-around
Logic errors e Unreachable states ® Non initialized data
® Incorrect Transitions ® Dead code

2-27

2 How fo Use PolySpace® Software

2-28

Project Managers — Integrating PolySpace
Verification with Configuration Management Tools

User Description

This workflow applies to project managers responsible for establishing
check-in criteria for code at different development stages.

Quality Obijectives

The goal of PolySpace verification is to test that code meets established
quality criteria before being checked in at each development stage.

Verification Workflow
The verification workflow consists of the following steps:

1 Project manager defines quality objectives, including individual quality
levels for each stage of the development cycle.

2 Project leader configures a PolySpace project to meet quality objectives.

3 Developers or testers run verification at the following stages:

¢ Daily check-in — On the files currently under development.
Compilation must complete without the permissive option.

¢ Pre-unit test check-in — On the files currently under development.

* Pre-integration test check-in — On the whole project, ensuring that
compilation can complete without the permissive option. This stage
differs from daily check-in because link errors are highlighted.

¢ Pre-build for integration test check-in — On the whole project, with

all multitasking aspects accounted for as appropriate.

® Pre-peer review check-in — On the whole project, with all
multitasking aspects accounted for as appropriate.

4 Developers or testers review verification results for each check-in activity
to ensure the code meets the appropriate quality level. For example, the
transition criterion could be: “No bug found within 20 minutes of selective
orange review”

Setting Up a Verification
Project

e “Creating a Project” on page 3-2

® “Specifying Options to Match Your Quality Objectives” on page 3-19
e “Setting Up Project to Check Coding Rules” on page 3-25

e “Setting Up Project for Generic Target Processors” on page 3-31

e “Setting up Project to Automatically Test Orange Code” on page 3-38

3 Setting Up a Verification Project

Creating a Project

In this section...

“What Is a Project?” on page 3-2

“Project Folders” on page 3-3

“Opening PolySpace Launcher” on page 3-3
“Specifying Default Folder” on page 3-6
“Creating New Projects” on page 3-7
“Opening Existing Projects” on page 3-9
“Specifying Source Files” on page 3-9
“Specifying Include Folders” on page 3-12
“Specifying Results Folder” on page 3-14
“Specifying Analysis Options” on page 3-15
“Configuring Text and XML Editors” on page 3-16

“Saving the Project” on page 3-18

What Is a Project?

In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. You must have a project before you can
run a PolySpace verification of your source code.

A project includes:

e The location of source files and include folders
® The location of a folder for verification results

® Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Creating a Project

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target

processors.
PolySpace Project ppm For populating a project
Model with analysis options,
including generic target
processors.
Desktop dsk In earlier versions of

PolySpace software, for
running a verification
on a client computer.

Project Folders

Before you begin verifying your code with PolySpace software, you must know
the location of your source files and include files. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project folder,
and then in that folder, create separate folders for the source files, include
files, and results. For example:

polyspace _project/

® sources
® includes

® results

Opening PolySpace Launcher

You use the PolySpace Launcher to create a project and start a verification.
To open the PolySpace Launcher:

1 Double-click the PolySpace Launcher icon.

3-3

3 Setting Up a Verification Project

3-4

2 If you have both PolySpace Client for C/C++ and PolySpace Client for Ada
products on your system, the PolySpace Language Selection dialog
box will appear.

PolySpace Language Selection |

Select a language

¥ PolySpace for CIC++

" PolySpace for Ada

0K I Cancel

Select PolySpace for C/C++, then click OK.

The PolySpace Launcher window appears:

Creating a Project

Specify
source files

Specify
include folders

Brvspocetamend |

File Edit Tools Help

x[ﬂ|ciﬁ|

I File Name I

Absolute| Path

Name

Anal

lysis options

General

----- Target/Compilation

Compliance with standards

PolySpace inner settings

Precision/Scaling

Multitasking

Include folders

Results Folder [-results-dir]

-

]

Send to PolySpace Server [

P Stert |

The Launcher window has three main sections.

| Compile : 0% | CDFA : 0% | Levell : 0% | Level2 : 0% |
00:00:00 00:00:00 00:00:00 00:00:00
Compile | search: ﬁ I Iﬂ
_E Stats Status I Description
@ Full Log
View log

Specify
analysis
options

Control

|_— verification

]_

Monitor
progress

3 Setting Up a Verification Project

3-6

Use this For...
section...
Upper-left Specifying:

e Source files
® Include folders

e Results folder

Upper-right Specifying analysis options

Lower Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Specifying Default Folder

PolySpace software allows you to specify the default folder that appears in
directory browsers in dialog boxes. If you do not change the default folder,
the default folder is the installation folder. Changing the default folder to
the project folder makes it easier for you to locate and specify source files

and include folders in dialog boxes.

To change the default folder to the project folder:

1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Default folder tab.

Creating a Project

x

Tools Menul Remote Laun-::herl Miscellaneousl Results folder i Default folder Editorsl Generic Ergetsl

Default folder for all browsers.

{* Always use this spedific folder |C:\PolySpacepolyspace_project — |

{ Use the current path as a default folder

QK Apply Cancel

3 Select Always use this specific folder if it is not already selected.
4 Enter or navigate to the project folder you want to use.

5 Click OK to apply the changes and close the dialog box.

Creating New Projects

To create a new project:

1 Select File > New Project.

The Choose the language dialog box appears:

3-7

3 Setting Up a Verification Project

Bl Choose the language x|

i~ crp

(0] 4 I Cancell

2 Select C, then click OK.
The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

PolySpace Launcher for C - C:\PolySpace\polyspace_project\example.cfg - | Ellil

File Edit Tools Help

[DOgalbh x o288 v e
example.cfg LI ;I : Search internal name from the selected line: I p | I%?
Absolute Path MName Value Internal name
a_pro Aﬁalysis options
E-General

----- Session identifier Example_Project prog

----- Date 05/01/2010 -date

----- Author username -authaor

""" Project version 1.0 ~verif-version

----- Keep all preliminary results files I +eep-al-fies

[E1-Report Generation [}

i-Report template name IC:\PolySpace\Poly| ... |report-template
CQutput format RTF - report-output-format

[#-Target/Compilation

[(]--Compliance with standards
[#--PolySpace inner settings
H
£

- Predsion/Scaling
H--Multitasking

Indude folders [-I]
= |c: PolySpace \polyspace_projectiindudes

Results Folder [-results-dir]
C:'PolySpace\palyspace_projectresults = |

3-8

Creating a Project

Opening Existing Projects

To open an existing project:

1 Select File > Open Project.
The Please select a file dialog box appears.
2 Select the project you want to open, then click OK.

The selected project opens in the Launcher.

PolySpace Launcher for C - G:\PolySpace\polyspace_project\example.cfg - 0] x|

File Edit Tools Help
|0 galbh x o dE e
e 'fl - | : Search internal name from the selected Iine:l '© | I%?

MName Value Internal name

Absolute Path

Space'polyspace_projectizources

Analysis options

o
¥

[=-General
----- Session identifier Example_Project prog
----- Date 05/01/2010 -date
----- Author LSername -author
----- Project version 1.0 ~verif-version
----- Keep all preliminary results files I +eep-al-files
[El-Report Generation I

-Report template name IC: \PolySpacePaly ... |report-template
L.Qutput format RTF - -report-output-format
H--Target/Compilation

t|--Compliance with standards

H--Predsion,/Scaling
- Multitasking

£
[
[#--PolySpace inner settings
£
[

Incude folders [-1]
I |C:\PolySpace \polyspace _projectiindudes

Results Folder [-results-dir]
C:\PolySpace\palyspace_project'results = |

Specifying Source Files

To specify the source files for your project:

3-9

3 Setting Up a Verification Project

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

]

The Please select a file dialog box appears.

x|
Look in: B sources il ﬁ El
[Z] example.c

I[‘.c}l files anly

[T Recurse subfolders

~Source files [-sources]

rFolders to incude [-1]

C:\PolySpace\polyspace_projectisources\example.c

C:VPolySpace\polyspace_projectindudes

CK Cancel

2 In the Look in field, navigate to your project folder containing your source
files.

3 Select the files you want to verify, then click the green down arrow button
in the Source files section.

3-10

Creating a Project

H

The path of each source files appear in the source files list.

Tip You can also drag folder and file names from an open folder directly to
the source files list or include list.

4 Click OK to apply the changes and close the dialog box.

The source files you selected appear in the files section in the upper left of
the Launcher window.

3-11

3 Setting Up a Verification Project

Absolute Path

C:\PolySpacepolyspace_project\sources

File Name
IE:u:aranE.n:

Incude folders [-I]
1 [C:\PalySpace\polyspace_projectijindudes

Results Folder [-resulta-dir]
C:\PolySpace\polyspace_projectiresults =) |

& W

Specifying Include Folders

To specify the include folders for the project:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

|

The Please select a file dialog box appears.

3-12

Creating a Project

Please select a file x|

2| o B o

Look in:

|‘§J example.c

I[‘.c}l files only LI

[T Recurse subfolders

~Source files [-sources] rFolders to incude [-1]

C:\PolySpace\polyspace_projectisources\example.c

C:VPolySpace\polyspace_projectindudes

CK Cancel

2 In the Look in field, navigate to your project folder.

3 Select the folder containing the include files for your project, then click the
green down arrow button in the Folders to include section.

r

The path for each include folder appears in the source files list.

4 Click OK to apply the changes and close the dialog box.

3-13

3 Setting Up a Verification Project

The include folders you selected appear in the Include folders section on
the left side of the Launcher window.

Absolute Path

C:\PolySpace\polyspace_project\sources

File Mame
[Jexample.c

Indude folders [-I]
1 |C:\PolySpace\polyspace_projectincdudes

Results Folder [-resulta-dir]
C:\PolySpacepolyspace_projectiresults) |

.

Specifying Results Folder

To specify the results folder for the project:
1 In the Results Folder section of the Launcher window, specify the full

path of the folder that will contain your verification results. For example:
C:\polyspace_project\results.

3-14

Creating a Project

The files section of the Launcher window now looks like:

Absolute Path

C:\PolySpace\polyspace_project\sources
¥op polysp _projectis

File Mame
[Jexample.c

Indude folders [-I]
1 |C:\PolySpace\polyspace_projectincdudes

Results Folder [-resulta-dir]
C:\PolySpacepolyspace_projectiresults) |

.

Specifying Analysis Options

The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software
uses during the verification process.

To specify General parameters for your project:

3-15

3 Setting Up a Verification Project

3-16

1 In the Analysis options section of the Launcher window, expand General.

2 The General options appear.

Search internal name from the selected line: ,@ | [‘.3?

Mame Value Internal name

Analysis options

El-General
----- Session identifier Example_Project -prog
----- Date 05,/01/2010 date
----- Author LIsername -author
----- Project version 1.0 ~yerif-version
----- Keep all preliminary results files - +eep-all-files
El-Report Generation -
----- Report template name C:\PolySpace'\Paoly ... |-report-template
----- Qutput format RTF - -report-output-format
- TargetfCompilation
#--Compliance with standards
[#--PolySpace inner settings
[#-Precision/Scaling
FH-Multitasking

3 Specify the appropriate general parameters for your project.

For detailed information about specific analysis options, see “Option
Descriptions”in the PolySpace Products or C Reference.

Configuring Text and XML Editors

Before you running a verification you should configure your text and XML
editors in the Launcher. Configuring text and XML editors allows you to view
source files and MISRA® reports directly from the Launcher logs.

To configure your text and . XML editors:

1 Select Edit > Preferences.

Creating a Project

The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

xq

—XML editor configuration

Specify the full path to a XML editor or use the browse button.
XML Editor: IC: \Program Files\MsOffice \Office 12\EXCEL.EXE E‘l

~Text editor configuration
Specify the full path to a text editor or use the browse button.

Text Editor: IC: \Program Files\Windows NT\Accessorieswordpad.exe =

Specify the command line arguments for the text editor,

Arguments: ISFILE

The following macros can be used SFILE, SLIME, SCOLUMM

K Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports. For example:

C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text editor to use to view source files from the Launcher logs.
For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 Specify command line arguments for the text editor. For example:

$FILE

6 Click OK.

3-17

3 Setting Up a Verification Project

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

x|
Look ir: I@ palyspace_project LI [ﬁ D

I includes
|50 resutts
|50 sources
[:IE:E:}:_‘h:le
My Documerts
Session idertifier | Ok
File= of type: I*_ng LI Cancel

2 In Look in, select your project folder.
3 In Session identifier, enter a name for your project.

4 Click OK to save the project and close the dialog box.

3-18

Specifying Options to Match Your Quality Obijectives

Specifying Options to Match Your Quality Objectives

While creating your project, you must configure analysis options to match
your quality objectives.

This includes:

In this section...

“Quality Objectives Overview” on page 3-19
“Choosing Contextual Verification Options” on page 3-19

“Choosing Strict or Permissive Verification Options” on page 3-21

“Choosing Coding Rules” on page 3-23

Quality Objectives Overview

While creating your project, you must configure analysis options to match
your quality objectives.

This includes choosing contextual verification options, coding rules, and
options to set the strictness of the verification.

Note For information on defining the quality objectives for your project, see
“Defining Quality Objectives” on page 2-5.

Choosing Contextual Verification Options

PolySpace software performs robustness verification by default. If you want
to perform contextual verification, there are several options you can use to
provide context for data ranges, function call sequence, and stubbing.

For more information on robustness and contextual verification, see “Choosing
Robustness or Contextual Verification” on page 2-5.

3-19

3 Setting Up a Verification Project

3-20

Note If you are aware of run-time errors in your code but still want to run
a verification, you can annotate your code so that these known errors are
highlighted in the Viewer. For more information, see “Annotating Code to
Indicate Known Run-Time Errors” on page 5-36.

To specify contextual verification for your project:

1 In the Analysis options section of the Launcher window, expand PolySpace
Inner Settings.

2 Expand the Generate a main and Stubbing options.

Mame Value Internal name

Analysis options

[#-General

+]-TargetfCompilation

[
[-Compliance with standards

[=-PolySpace inner settings

[#--Run a verification unit by unit r -unit-by-unit
[El-Generate a main ¥ -main-generator
----- Write accesses to global variables |public * | ... |-main-generator-writes-variables
----- Function calls urused * | ... |-main-generator-calls
----- Startup function to call -function-called-before-main
E--Stubbing
----- Variable range setup v |-data-range-specifications
----- Stub all functions r -permissive-stubber
----- Mo automatic stubbing r o-automatic-stubhing
[#]--Assumptions
----- Automatic Orange Tester r -prepare-automatic-tests
----- Run verification in 32 or 64-bit mode |auto - -machine-architecture
----- Mumber of processes for multiple CPU |4 -Max-processes
----- Other options

[#-Predsion/Scaling

3 To set ranges on variables, use the following options:

Specifying Options to Match Your Quality Obijectives

e Variable range setup (-data-range-specifications) — Activates the
DRS option, allowing you to set specific data ranges for a list of global
variables.

* Write accesses to global variables
(-main-generator-writes-variables) — Specifies how the generated
main initializes global variables.

4 To specify function call sequence, use the following options:

¢ Function calls (-main-generator-calls) — Specifies how the
generated main calls functions.

¢ Startup function to call (-function-called-before-main) —
Specifies an initialization function called after initialization of global
variables but before the main loop.

5 To control stubbing behavior, use the following options:

¢ No automatic stubbing (-no-automatic-stubbing) — Specifies that
the software will not automatically stub functions. The software list the
functions to be stubbed and stops the verification.

¢ Stub all functions (-permissive-stubber) — Specifies that the
software stubs all functions, including those with function pointers as
return type, or those with complex function pointers as parameters.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Choosing Strict or Permissive Verification Options

PolySpace software provides several options that allow you to customize the
strictness of the verification. You should set these options to match the
quality objectives for your application.

Note If you are aware of run-time errors in your code but still want to run
a verification, you can annotate your code so that these known errors are
highlighted in the Viewer. For more information, see “Annotating Code to
Indicate Known Run-Time Errors” on page 5-36.

3-21

3 Setting Up a Verification Project

3-22

To specify the strictness of your verification:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2 Expand the Strict and Permissive options.

Mame Value Internal name
Analysis options
[#l-General
[#-Target/Compilation
[=-Compliance with standards
Code from DOS or Windows filesystem [+ -dos
[#-Embedded assembler
=-Strict - -sfrict
i Give all warnings r -Wall
El-Permissive r -permissive
----- Allow non ANSIISO C-90 Standard types of bitfields - -allowe-non-nt-bitfield
----- Accept inteqgral type conflicts r -permissive-link
----- Continue even with undefined global variables - -gllow-undef-variables
----- Permits overflowing computations on constants r -Hgnore-constant-overflows
----- Allow un-named Unions/Structures r -allow-unnamed-fields
----- Do not check the sign of operand in left shifts - -gllow-negative-operand-in-shift
(- Check MISRA-C: 2004 rules r
[+-¥eil[IAR support default |- -dialect

[=]-PolySpace inner settings

3 In addition, expand PolySpace Inner Settings > Assumptions.

4 Use the following options to make verification more strict:

¢ Detect overflows on unsigned integers
(-detect-unsigned-overflow) — Verification is more strict with
overflowing computations on unsigned integers.

* Do not consider all global variables to be initialized
(-no-def-init-glob) — Verification treats all global variables as

non-initialized, therefore causing a red error if they are read before they

are written to.

Specifying Options to Match Your Quality Obijectives

Give all warnings (-wall) — Specifies that all C compliance warnings
are written to the log file during compilation.

Strict (-strict) — Specifies strict verification mode, which is
equivalent to using the -wall and -no-automatic-stubbing options
simultaneously.

5 Use the following options to make verification more permissive:

Enable pointer arithmetic out of bounds of fields
(-allow-ptr-arith-on-struct) — Enables navigation within a
structure or union from one field to another.

Do not check the sign of operand in left shifts
(-allow-negative-operand-in-shift) — Verification allows a
shift operation on a negative number.

Permits overflowing computations on constants
(-ignore-constant-overflow) — Verification is permissive with
overflowing computations on constants.

Allow non ANSI/ISO C-90 Standard types in bitfields
(-allow-non-int-bitfields) — Allows you to define types of bitfields
other than signed or unsigned int.

Continue even with undefined global variables
(-allow-undef-variables) — Verification does not stop due
to errors caused by undefined global variables.

Allow un-named Unions/Structures (-allow-unnamed-fields) —
Verification does not stop due to errors caused by unnamed fields in
structures.

Kiel/TAR support (-dialect) — Verification allows syntax associated
with the TAR and Keil dialects.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Choosing Coding Rules

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

3-23

3 Setting Up a Verification Project

3-24

For more information, see “Setting Up Project to Check Coding Rules” on
page 3-25.

Note If you are aware of coding rule violations, but still want to run a
verification, you can annotate your code so that these known violations are
highlighted in the Launcher. For more information, see “Annotating Code to
Indicate Known Coding Rule Violations” on page 5-34

Setting Up Project to Check Coding Rules

Setting Up Project to Check Coding Rules

In this section...

“PolySpace MISRA Checker Overview” on page 3-25

“Checking Compliance with MISRA C Coding Rules” on page 3-25
“Creating a MISRA C Rules File” on page 3-27

“Excluding Files from the MISRA C Checking” on page 3-29

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.?

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

3-25

http://www.misra-c.com/

3 Setting Up a Verification Project

The Compliance with standards options appear.
2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and folders to ignore,
appear.

Mame Value Internal name

Analysis options

[+--General

- Target/Compilation

E--Compliance with standards

----- Code from DOS or Windows filesystem v -dos

[+-Embedded assembler
B-Strict - -sirict
[#--Permissive - -permissive
El-Check MISRA C rules v

----- MISRA C rules configuration C:'\PolySpace'p| ... |-misra2

----- Files and folders to ignore C:\Polyspace'p| ... |Hncludes-to-ignore
[#--Keil TAR. support default - -dialect

[+-PolySpace inner settings

[+-Precision,/Scaling

FH-Multitasking

4 Specify which MISRA C rules to check and which, if any, files to exclude
from the checking.

Note For more information on using the MISRA C checker, see Chapter
11, “MISRA Checker”.

3-26

Setting Up Project to Check Coding Rules

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

Opening a New Rules File
To open a new rules file:

1 Click the button I_l to the right of the Rules configuration option.
A window for opening or creating a MISRA C rules file appears.
2 Select File > New File.

A table of rules appears.

3-27

3 Setting Up a Verification Project

3-28

Rules Errar I WNarning Off

MISEL C rules

I—Numl::ner af rules by mode 7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

4 Character sets

Identifiers

Types

I-' Constants

8 Declarstions and definitions

9 Intialization

0 Arithmetic type conversions

1 Painter type conversions

2 Exrezsions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l B Functions
—16.1 Functionz shall nat be defined with variable numbers of arguments. f" - o
—16.2 Functions shall nat call themselves, either directly or indirectly. f" - o
—16.3 ldentifiers shall he given for all of the parameters in & function prototy o - f"
—16.4 The identifiers used in the declarstion and defintion of 2 function shall © 8 =
—16.2 Functions wvith ho parameters shall be declared with parameter type f" f" o
—16.6 The number of arguments passed to a function shall match the numbe f" f" o
—I16.7 & pointer parameter in a function protatype should be declared as poi f" « g
—16.5 Al exit paths from a function with non-void return type shall have an ¢ r ':H o
—16.9 & function identifier shall only be used with either a preceding & or f" f" o
—1 G610 If & function returns error information, then that error information sha © © g

=T Pointer and arrays
—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs © © g
—17.2 Pointer subtraction shall only be applied to pointers that address elems © © g
—17.3 =, == = == shal not be applied to pointer types except where they po © © g
—17.4 Array indexing shall be the only allowed form of poirter arithmetic. f" o f"
—17.5 The declaration of objects should contain no more than 2 levels of poi f" f" o
—17 6 The address of an ohject with automstic storage shall not be azsigne r i "

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

Setting Up Project to Check Coding Rules

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and folders to ignore option.

2 Click the folder icon.

=]

The Select a file or folder to include dialog box appears.

3 Select the files or folders (such as include files) you want to ignore.

3-29

3 Setting Up a Verification Project

4 Click OK.
The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

3-30

Setting Up Project for Generic Target Processors

Setting Up Project for Generic Target Processors

In this section...
“Project Model Files” on page 3-31

“Creating Project Model Files” on page 3-32
“Viewing Existing Generic Targets” on page 3-32
“Defining Generic Targets” on page 3-33
“Deleting a Generic Target ” on page 3-36

“Creating a Configuration File from a PolySpace Project Model File” on
page 3-36

Project Model Files

What Is a PolySpace Project Model File?

A PolySpace project model file is a project file that includes generic target
processors. You can use this file to share project information with your
development team.

Although you can populate a project with information, such as source files and
project options, from a project model file, you cannot run a verification with a
project model file. You must have a configuration file to run a verification.

Workflow for Using Project Model Files

A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (. ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

3 A developer opens the .ppm file. From this file, PolySpace software
populates the project parameters and the generic targets in the preferences.

3-31

3 Setting Up a Verification Project

4 The developer adds source files, include folders, and a results folder to the
project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating Project Model Files
You use the PolySpace Launcher to create a PolySpace project model file.

To create a project model file:
1 Select File > New Project to create a new project.
2 Define the generic target, as described in the following sections.
3 Select File > Save project.
The Save the project as dialog box appears.
4 Select *.ppm from the Files of type menu.
5 In Session identifier, enter a name for your project model file.

6 Click OK to save the file and close the dialog box.

Viewing Existing Generic Targets
Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:
1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

3-32

Setting Up Project for Generic Target Processors

Preferences

Tools Menul Remote Launcherl Miscellanecusl Results Folderl Default Folderl Editors | Generic targets |

targetl

Remove

Edit |
[== |

0K Apply Cancel

3 Click Cancel to close the dialog box.

Defining Generic Targets

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,

and specifying the characteristics of your processor.

To define a generic target:
1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

3-33

3 Setting Up a Verification Project

——P35T Generic-—-

mcpu.. . (Advanced)

3 Select mcpu... (Advanced).

The Generic target options dialog box appears.

3-34

Setting Up Project for Generic Target Processors

B Generic target options x|

Enter the target name ||

Default result of signed right shift I.ﬂ.riﬂﬁmetical (Default) ;I

Endianness ILitﬁE endian LI

Bhits 16bits 3Zbits &4bits

Char i« (8 T " |V Signed
Short i v r i)
Int [0 i -
Long [] i+ i)
Long long [y (i {* -
Float]] o i
Doubleflong double] v [
Pointer] f* i i)
Alignment [[o i
Save Cancel

4 In Enter the target name, enter a name for your target.

5 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

3-35

3 Setting Up a Verification Project

3-36

Note For a list of common generic targets, see .

For detailed information on each target option, see “GENERIC ADVANCED
TARGET OPTIONS”in the PolySpace Products for C Reference.

6 Click Save to save the generic target options and close the dialog box.

Deleting a Generic Target
Generic targets that you create are stored as a PolySpace software preference.
Generic targets remain in your preferences until you delete them.

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:
1 Select Edit > Preferences.
The Preferences dialog box appears.
2 Select the Generic targets tab.
3 Select the target you want to remove.
4 Click Remove.
5 Click OK to apply the change and close the dialog box.

Creating a Configuration File from a PolySpace
Project Model File

To run a verification, you must have a configuration file, not just a project
model file. However, you can create a configuration file from a project model

file.

To create a configuration file from a project model file:

Setting Up Project for Generic Target Processors

1 Open the project model file.

Note When opening files, you can select Project Model (*.ppm) files in
the File of type section to view only project model files.

Opening the project model file populates the:
® Generic targets in the preferences

® Analysis options and other project information

2 Enter additional project information, such as the results folder and source
files.

Note If you enter the results folder and source files in the project before
you save it as a PolySpace project model file, then that information is saved
in the file and appears in the project when you open the file.

3 Select File > Save project.

The Save the project as dialog box appears.
4 Enter a name for your configuration file.
5 Leave the default type as *.cfg.

6 Click OK to save the project and close the dialog box.

3-37

3 Setting Up a Verification Project

3-38

Setting up Project to Automatically Test Orange Code

In this section...

“PolySpace Automatic Orange Tester” on page 3-38

“Enabling the Automatic Orange Tester” on page 3-38

PolySpace Automatic Orange Tester

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
by automatically creating test cases for all input variables in orange code, and
then dynamically testing the code to find actual runtime errors.

For more information, see “Automatically Testing Orange Code” on page 9-43.

Enabling the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To enable the automatic orange tester:

1 In the Analysis Options window, expand the PolySpace inner settings
menu.

2 Select the Automatic Orange Tester check box.

Setting up Project to Automatically Test Orange Code

Search internal name from the selected line: ,@ | L\\\J?

MName Value Internal name

Analysis options

[+-General
[#]-Target/Compilation
[#]-Compliance with standards
[=-PolySpace inner settings

[+--Run a verification unit by unit - -unit-by-unit
[H--Generate a main W -main-generator
[#-Stubbing
[#-Assumptions
i W i

----- Run verification in 32 or 64-bit mode auto - -machine-architecture
----- Mumber of processes for multiple CPU care systems [4 ‘Max-processes

----- Other options

[-Precision/Scaling
[#-Multitasking

The -prepare-automatic-tests option is enabled.

For more information on using the Automatic Orange Tester, see
“Automatically Testing Orange Code” on page 9-43.

3-39

3 Setting Up a Verification Project

3-40

Emulating Your Runtime
Environment

e “Setting Up a Target” on page 4-2
* “Verifying an Application Without a “Main™ on page 4-30

® “Specifying Data Ranges for Variables and Functions (Contextual
Verification)” on page 4-34

4 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 4-2

“Specifying Target/Compilation Parameters” on page 4-3
“Predefined Target Processor Specifications” on page 4-4
“Modifying Predefined Target Processor Attributes” on page 4-7
“Defining Generic Target Processors” on page 4-9

“Common Generic Targets” on page 4-10

“Viewing Existing Generic Targets” on page 4-11

“Deleting a Generic Target ” on page 4-12

“Compiling Operating System Dependent Code (OS-target issues)” on page
4-13

“Address Alignment” on page 4-17
“Ignoring or Replacing Keywords Before Compilation” on page 4-18
“Verifying Code That Uses KEIL or IAR Dialects” on page 4-20

“How to Gather Compilation Options Efficiently” on page 4-28

Target/Compiler Overview

Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Setting Up a Target

For information on setting up a Project Model File to share targets and other
project information with your development team, see “Setting Up Project for
Generic Target Processors” on page 3-31.

Specifying Target/Compilation Parameters

The Target/Compilation options in the Launcher allow you to specify the
target processor and operating system for your application.

To specify target parameters for your project:

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

2 The Target/Compilation options appear.

Mame | “alue Internal name
Analysiz options
eneral
f—]—Target.l'Cu:umpilatiun
—Target pracessar type ZRErc ;l .. |Harget
—ioperating system target for PalySpace stubs =alatis ;l FOS-target
—TDefined Preprocesszor Macros .. IO
—Undefined Preprocessar Macros ... U
—include .. finclude
—iCatmmandizcript to apply to preproceszed files ... Fpost-preprocessing-command
—iCommandizcript to apply after the end of the code verification ... |post-analysis-commanc
F-Complisnce with standards
uIySpace inner settings
reu:isiu:um’Sc:aling
urt'rtasking

3 Select the Target processor type for your application.

4 Specify the Operating system target for your application.

For detailed specifications for each predefined target processor, see
“Predefined Target Processor Specifications” on page 4-4.

4-3

4 Emulating Your Runtime Environment

For information on each Target/Compilation option, see “Target/Compiler
Options”in the PolySpace Products for C Reference.

Predefined Target Processor Specifications

PolySpace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

Setting Up a Target

Predefined Target Processor Specifications

Target char | short| int | long| long | float| double | long pir | sign of | endian | align
long double char
sparc 8 16 32 32 64 32 64 128 32 | signed Big 64
m68k / 8 16 32 32 64 32 64 96 32 | signed Big 64
ColdFire?
powerpc 8 16 32 32 64 32 64 128 32 | unsigned| Big 64
1386 8 16 32 32 64 32 64 96 32 | signed Little 32
c-167 8 16 16 32 32 32 64 64 16 | signed Little 64
tms320c3x | 32 32 32 32 64 32 32 40* 32 signed Little 32
sharc21x61| 32 32 32 32 64 32 32 32 32 signed Little 32
[64] [64]
NEC-V850 8 16 32 32 32 32 32 64 32 | signed Little 32
(16, 8]
hcos® 8 16 16 |32 |32 |32 |32 32 165 | unsigned| Big 32
[32] [64] [64] [16]
hc128 8 16 16 32 32 32 32 32 324 | signed Big 32
[32] [64] [64] [16]
mpc5xx® 8 16 32 32 64 32 32 32 32 signed Big 32
[64] [64] [16]
ci18 8 16 16 32 32 32 32 32 16 | signed Little 8
[24] [24]
mcpu 8 8 16 32 32 32 32 32 16 | signed Little 32
(Advanced) | [16] | [16] | [32] [64] [64] [64] (32] [16, 8]

3. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
4. All operations on long double values will be imprecise (that is, shown as orange).

5. Non ANSI C specified keywords and compiler implementation-dependent pragmas and
interrupt facilities are not taken into account by this support

6. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

7. The c18 target supports the type short long as 24-bits.

4-5

4 Emulating Your Runtime Environment

4-6

After selecting a predefined target, you can modify some default attributes
by selecting the browse button to the right of the Target processor type
drop-down menu. The optional settings for each target are shown in [brackets]
in the table.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics, or create a generic target processor.

Note If your target processor does not match the characteristics of any
processor described above, contact MathWorks technical support for advice.

Setting Up a Target

Modifying Predefined Target Processor Atiributes

You can modify certain attributes of the predefined target processors. If your
specific processor is not listed, you may be able to specify a similar processor
and modify its characteristics to match your processor.

Note The settings that you can modify for each target are shown in [brackets]
in the Predefined Target Processor Specifications on page 4-5 table.

To modify target processor attributes:

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

The Target/Compilation options appear.

Matne | “allie Internal natme
Analysiz options
eneral
f—]—Target.l'CompilatiDn
—Target processor type SpErc ;l ... |Harget
—Operating system target for PolySpace stubs Solaris =1 FOStarget
—Defined Preprocessor Macros .. D
—Undefined Preprocesszar Macros o o
—Include ... Finclude
—iCommandizcript to apply to preprocessed files ... Fpost-preprocessing-cotmmand
—iCatmmandizcript to apply after the end of the code verification ... |post-analysis-commanc
F-Compliance with standards
ulySpace inner settings
reu:isiu:um’Sc:aling
urt'rtasking

2 Select the Target processor type you want to use.

3 Select the browse button Ij to the right of the Target processor type
drop-down menu.

The Advanced target options dialog box opens.

4-7

4 Emulating Your Runtime Environment

A-:Ivance-:l target options

4 Modify the attributes as needed.

For information on each target option, see “GENERIC ADVANCED
TARGET OPTIONS”in the PolySpace Products for C Reference.

5 Click OK to save your changes.

4-8

Setting Up a Target

Defining Generic Target Processors
If your application is designed for a custom target processor, you can configure

many basic characteristics of the target by selecting the selecting the mcpu. . .
(Advanced) target, and specifying the characteristics of your processor.
To configure a generic target:

1 In Analysis options, expand Target/Compilation.

2 In the Target processor type drop-down menu, select mepu...
(Advanced).

The Generic target options dialog box opens.

x

Enter the target name ||

Default result of signed right shift I.ﬂ.riﬂﬁmetical (Default) ;I

Endianness ILitﬁE endian LI

Bhits 16bits 3Zbits &4bits

Char i« (8 T " |V Signed
Short i v r i)
Int [0 i -
Long [] i+ i)
Long long [y (i {* -
Float]] o i
Doubleflong double] v [
Pointer] f* i i)
Alignment [[o i
Save Cancel

4 Emulating Your Runtime Environment

4-10

3 In Enter the target name, enter a name for your target.

4 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For information on each target option, see “GENERIC ADVANCED
TARGET OPTIONS”in the PolySpace Products for C Reference.

5 Click Save to save the generic target options and close the dialog box.

For more information, see “Setting Up Project for Generic Target Processors”
on page 3-31.
Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST17 char | short| int | long long |float | doublel long | ptr char is | endian
long double

size 8 16 16 32 32 32 32 32 16/32 unsigned Big

alignment| 8 16/8 | 16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8| 32/16/8 | 32/16/8 | N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char | short| int | long long | float | double long | ptr char is | endian
long double

size 8 16 16 32 32 32 64 64 16/64 | unsigned Big

alignment| 8 8 8 8 8 8 8 8 8 N/A N/A

Setting Up a Target

Hitachi H8/300, H8/300L

Hitachi | char | short| int | long long | float | double long | ptr char is | endian
H8/300, long double
H8/300L
size 8 16 16/32| 32 64 32 654 64 16 unsigned Big
alignment| 8 16 16 16 16 16 16 16 16 N/A N/A
Hitachi H8/300H, H8S, H8C, H8/Tiny
Hitachi | char | short|int |long |long |float | doublel long | ptr char is | endian
H8/300H, long double
H8S,
H8C,
H8/Tiny
size 8 16 16/ 32 64 32 64 64 32 unsigned Big
32
alignment| 8 16 32/ 32/16 32/16 32/16 32/16 | 32/16 32/16 N/A N/A
16

Viewing Existing Generic Targets

Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:

1 Select Edit > Preferences.

The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

4-11

4 Emulating Your Runtime Environment

x

targetl

Edit |
==

Remove

Ok | Apply Cancel

4-12

3 Click Cancel to close the dialog box.

Deleting a Generic Target
Generic targets that you create are stored as a PolySpace software preference.
Generic targets remain in your preferences until you delete them.

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:
1 Select Edit > Preferences.

The Preferences dialog box appears.

Setting Up a Target

2 Select the Generic targets tab.

3 Select the target you want to remove.

4 Click Remove.

5 Click OK to apply the change and close the dialog box.

Compiling Operating System Dependent Code

(OS-target issues)

This section describes the options required to compile and verify code designed
to run on specific operating systems. It contains the following:

e “List of Predefined Compilation Flags” on page 4-13

e “My Target Application Runs on Linux” on page 4-15

e “My Target Application Runs on Solaris” on page 4-16

o “My Target Application Runs on Vxworks” on page 4-16

e “My Target Application Does Not Run on Linux, vxworks nor Solaris” on

page 4-16

List of Predefined Compilation Flags
These flags concern predefined OS-target: no-predefined-OS, linux, vxworks,
Solaris and visual (-0S-target option).

OS-target Compilation flags —include file and content
no-predefined-OS -D__STDC___
visual -D__STDC__ -include

<product_dir>/cinclude/pst-visual.h

4-13

4 Emulating Your Runtime Environment

OS-target Compilation flags —include file and content

vxworks -D__STDC__ -include

-DANSI_PROTOTYPES <product_dir>/cinclude/pst-vxworks.h
-DSTATIC=
-DCONST=const
-D__STDC__
-D__GNUC__ =2
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun

-D__sun
-D__sun__
-D__svr4__
-D__SVR4

linux -D__STDC__ <product_dir>/cinclude/pst-linux.h
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__ELF__

-Dunix

-D__unix
-D__unix__

-Dlinux

-D__linux
-D__linux__

-Di386

-D__ 1386
-D__i386__

-Di686

-D__ 1686
-D__i1686__
-Dpentiumpro

4-14

Setting Up a Target

OS-target Compilation flags —include file and content

-D__pentiumpro
-D__pentiumpro__

Solaris -D__STDC__ No -include file mentioned
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2

-D__GNUC_MINOR__ =8
-D__GCC_NEW_VARARGS__

-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

e Setting the same -D flags manually, or

¢ Using the -include option on a copied and modified pst-OS-target.h file

My Target Application Runs on Linux
The minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-linux/next \

4-15

4 Emulating Your Runtime Environment

where the PolySpace product has been installed in the folder
/usr/local/PolySpace/ CURRENT-VERSION.

If your target application runs on Linux® but you are launching your
verification from Windows, the minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I POLYSPACE_C\Verifier\include\include-linux \
-I POLYSPACE_C\Verifier\include\include-linux\next \

where the PolySpace product has been installed in the folder POLYSPACE_C.

My Target Application Runs on Solaris
If PolySpace software runs on a Linux machine:

polyspace-c \
-0S-target Solaris \
-I /your_path_to_solaris_include

If PolySpace runs on a Solaris™ machine:

polyspace-c \
-0S-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \

-0S-target vxworks \
-I /your_path_to/Vxworks_include_folders

My Target Application Does Not Run on Linux, vxworks nor
Solaris

If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \

4-16

Setting Up a Target

-0S-target no-predefined-0S \
-I /your_path_to/MyTarget_include_folders

Address Alignment

PolySpace handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard
which guarantee that:

¢ that global sizeof and offsetof fields are optimum (i.e. as short as
possible);
¢ the alignment of all addressable units is respected;

® global alignment is respected.
Consider the example:
struct foo {char a; int b;}

¢ Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size®

® So in the example, char a begins at offset 0 and its size is 8 bits. int b
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently, int b begins at
offset=32. The size of the struct foo before global alignment is therefore
64 bits.

¢ The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

® In the example, global alignment = max (alignment char a,
alignment int b) = max (8, 32) 32

¢ The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global alignment (32), so sizeof is not adjusted.

8. except in the cases of “double” and “long” on some targets.

4-17

4 Emulating Your Runtime Environment

Ignoring or Replacing Keywords Before Compilation

You can ignore noncompliant keywords such as “far” or 0x followed by an
absolute address. The template provided in this section allows you to ignore
these keywords.

To ignore keywords:

1 Save the following template in ¢: \PolySpace\myTpl.pl.

2 In the Target/Compilation options, select Command/script to apply to
preprocessed files.

3 Select myTpl.pl using the browse button.

For more information, see -post-preprocessing-command.

Content of the myTpl.pl file

#!/usr/bin/perl

HHHHHHHHHHH AR RAR AR AR R AR
Post Processing template script

#

HHHHHHHHHHH AR AR AR AR AR AR AR
Usage from Launcher GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl

3) Windows: \Verifier\tools\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl

#
HHHHHHHHHHHHHRHRAR AR AR AR AR

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

4-18

Setting Up a Target

Remove far keyword
s/far//;

Remove "@ OxFE1" address constructs
s/\@\sOx[A-F0-91*//g;

Remove "@OXFE1" address constructs
s/\@Ox[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\ (\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

Perl Regular Expression Summary

HIHBHEHHAH B HAT R HH AR BB HH AR BB HHA RS R AR HH R R
Metacharacter What it matches

HHBHEHH AR B HH AT H AR BB HH AR BB H R AR R AR H R R SRS
Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[*a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as ["0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

Whitespace Characters

\s Whitespace character

\S Non-whitespace character
\n newline

\r return

\t tab

o3 W I O O I W W W W

4-19

4 Emulating Your Runtime Environment

4-20

\f formfeed
\b backspace

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

~ Matches to beginning of line

$ Matches to end of line

Repeated Characters

x? 0 or 1 occurence of Xx

x* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively

to|be|great One of "to", "be" or "great"

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses
HURHHBHHBHHHBHHBHH TR SRR H BB R AR H BB HH RS HBHH TR H B H TR SR BT
Back referencing

B S S S T S S S S S R S S

#
#
e.g. swap first two words around on a line
red cat -> cat red

s/ (\wt) (\w+)/$2 $1/;

#

HARBRAAHARBHAHARRBHAHARBRAHAARBHAH AR R AR AARBHAH AR B AR HAREH

Verifying Code That Uses KEIL or IAR Dialects

Typical embedded control applications frequently read and write port data,
set timer registers and read input captures. To deal with this without using
assembly language, some microprocessor compilers have specified special
data types like sfrand sbit. Typical declarations are:

sfr AO 0x80;
sfr A1 = 0x81;
sfr ADCUP = OxDE;

Setting Up a Target

sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx
micro processor. The definition of sfr in these header files customizes the
compiler to the target processor.

When accessing a register or a port, using sfr data is then simple, but is
not part of standard ANSI C:

int status,PO;

void main (void) {

ADCUP = 0x08; /* Write data to register */

A1 = OxFF; /* Write data to Port */

status = PO; /* Read data from Port */

EI = 1; /* Set a bit (enable all interrupts) */
}

You can verify this type of code using the Kiel/TAR support option
(-dialect). This option allows the software to support the Keil or IAR C
language extensions even if some structures, keywords, and syntax are not
ANSI standard. The following tables summarize what is supported when
verifying code that is associated with the keil or iar dialects.

The following table summarizes the supported keil C language extensions:

Example: -dialect keil -sfr-types sfr=8

Type/Language | Description Example Restrictions
Type bit ® An expression to type . pointers to bits and
bit gives values in bit x =0, y = 1, arrays of bits are
range [0,1]. z = 2; not allowed
. assert(x == 0);
® Converting an assert(y == 1);
expression in the assert(z == 1)

not equal to 0, else == sizeof(int
0. This behavior is
similar to c++ bool

type.

3

. cpey 5
type, gives 1 if it is assert(sizeof(bit)
))

4-21

4 Emulating Your Runtime Environment

4-22

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
Type sfr ® The -sfr-types option sfr and sbit types
defines unsigned sfr x = 0xf0; // are only allowed
types name and size declaration of in declarations of
in bits. variable x at external global
The behavior of :??‘:gsi SXES4EEF; vamsliies.
a variable follows
a variable of type
integral. For this example, options
A variable which need to be:
overlaps another one
(in term of address) -dialect keil
will be considered as -sfr-types sfr=8, \
volatile. sfr16=16
Type sbit Each read/write
access of a variable is sfr x = 0xFO;
replaced by an access sbit x1 = x ~ 1; // 1st bit of x
of the corresponding sbit x2 = OxFO ~ 2; // 2nd bit of x
sfr variable access. sbit x3 = OxF3; // 3rd bit of x
sbit y0 = t[3] ~ 1;

Only external global
variables can be
mapped with a sbit
variable.

Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

a variable can also
be declared as extern
bit in an another file.

/* filel.c */
sbit x = PO ~ 1;
/* file2.c */
extern bit x;
X =1;

// set the 1st bit of PO to 1

Setting Up a Target

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ OxFO
int x @ OxFE ;
static const

int y @ OxA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

A warnings in the
log file is displayed
when an interrupt
function has been
found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void fool (void)
interrupt XX =YY
using 99 { }

void foo2 (void) _
task_ 99 _priority_
2 {}

Entry points and

interrupts are not
taken into account
as -entry-points.

Keywords ignored

alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant. Defining -D _ C51__, keywords large code, data, xdata, pdata

and xhuge are ignored.

The following table summarize the iar dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language | Description Example Restrictions
Type bit ® An expression to type _ pointers to bits and
bit gives values in union { arrays of bits are
range [0,1]. int v; not allowed
) struct {
¢ Converting an int z;
expression in the }y;
type, gives 1 if it is }s;
not equal to 0, else
0 ’I"hIS behavior 1s void f (VOld) {
similar to c¢++ bool bit y1 = s.y.z . 2;
type. bit x4 = x.4;

4-23

4 Emulating Your Runtime Environment

4-24

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

e [If initialized with
values O or 1, a
variable of type bit
is a simple variable
(like a c++ bool).

® A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr

type)

bit x5 = OxFO
y1 = 1;

// 2nd bit of s.y.z

// is set to 1
oF

. 5;

Type sfr

e The -sfr-types option
defines unsigned
types name and size.

® The behavior of
a variable follows
a variable of type
integral.

e A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = Oxf0; //
declaration of
variable x at
address OxFO

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

e Individual bit
can be accessed
without using sbit/bit
variables.

e Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

int x[3], y;

x[2].2 = x[0].83 + y.1;

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ O0xFO;
int xx @ OXFE ;
static const int y
@0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

® A warning is
displayed in the
log file when an
interrupt function
has been found:
"interrupt handler
detected : funcname"

® A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

interrupt [1] \
using [99] void
fool(void) {

monitor [3] void
foo2(void) {

\
b

\
b

Entry points and

interrupts are not
taken into account
as -entry-points.

Keywords ignored

saddr, reentrant, reentrant_idata, non_banked, plm, bdata,
idata, pdata, code, data, xdata, xhuge, interrupt, __interrupt

and __intrinsic

4-25

4 Emulating Your Runtime Environment

4-26

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
Unnamed ® Fields of _ .
struct/union unions/structs with union { int x; };

no tag and no name
can be accessed
without naming their
parent struct.

® Option
-allow-unnamed-fiel
need to be used to
allow anonymous
struct fields.

® On a conflict
between a field
of an anonymous
struct with other
identifiers:

= with a variable
name, field name
is hidden

= with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

= with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict”

union { int y; struct { int

z; }; } @ OxFO;

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language

Description Example Restrictions

is displayed in the
log file.

no_init attribute

® a global variable S #pragma no_init
declared with this no_}n}t 1”1‘ X3 has no effect
attribute is handled no_init union

like an external { int y; } @ OxFE;
variable.

e It is handled like a
type qualifier.

The option sfr-types defines the size of a sfr type for the keil or iar dialect.
The syntax for an sfr element in the list is type-name=typesize.
For example:
sfr-types sfr=8,sfr16=16
defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of

16-bits. A value type-name must be given only once. 8, 16 and 32 are the
only supported values for type-size.

Note As soon as an sfr type is used in the code, you must specify its name
and size, even if it is the keyword sfr.

Note Many IAR and Keil compilers currently exist that are associated to
specific targets. It is difficult to maintain a complete list of those supported.

4-27

4 Emulating Your Runtime Environment

4-28

How to Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed to “Verifying Code That
Uses KEIL or IAR Dialects” on page 4-20). Rather than applying minor
changes to the code, create a single polyspace.h file which will contain all
target specific functions and options. The -include option can then be used to
force the inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:

¢ The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

¢ The position of the error will be identified more precisely.

¢ There will be no need to modify original source files.
Indirect benefits:

¢ The file is automatically included as the very first file in all original .c files.

¢ The file can contain much more powerful macro definitions than simple
-D options.

¢ The file is reusable for other projects developed under the same
environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

/! Generic definitions, reusable from one project to another
#define far

Setting Up a Target

#define at(x)

// A prototype may be positioned here to aid in the solution of
// a link phase conflict between

// declaration and definition. This will allow detection of the
// same error at compilation time instead of at link time.

// Leads to:

// - earlier detection

/] - precise localisation of conflict at compilation time

void f(int);

// The same also applies to variables.
extern int x;

// Standard library stubs can be avoided,
// and 0S standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
//automatic stubbing of std functions

#define _ polyspace_no_sscanf

#define _ polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

4-29

4 Emulating Your Runtime Environment

4-30

Verifying an Application Without a “Main”

In this section...

“Main Generator Overview” on page 4-30
“Automatically Generating a Main” on page 4-31

“Manually Generating a Main” on page 4-31

“Main Generator Assumptions” on page 4-32

Main Generator Overview

When your application is a function library (API) or a single module, you must
provide a main that calls each function because of the execution model used
by PolySpace. You can either manually provide a main, or have PolySpace
generate one for you automatically.

When you run a verification on PolySpace Client for C/C++ software, the main
is always generated. When you run a verification on PolySpace Server for
C/C++ software, you can choose automatically generate a main by selecting
the Generate a main (-main-generator) option.

PolySpace Client for C/C++ Software Default Behavior

The PolySpace Client for C/C++ product automatically checks whether the
code for verification contains a "main" or not.

e If a main exists in the set of files, the verification proceeds with that main.

¢ If a main does not exist, the tool generates a main. You can
specify the options: -main-generator-writes-variables and
-main-generator-calls.

PolySpace Server for C/C++ Software Default Behavior

By default, the PolySpace Server for C/C++ product stops verification if it
does not find a main. This behavior can help isolate files missing from the
verification.

Verifying an Application Without a “Main”

However, you can specify that the PolySpace Server for C/C++ product
automatically generate a main. The tool then generates a main with
the assumption of verifying a library. You can specify the options
-main-generator-writes-variables and -main-generator-calls.

Automatically Generating a Main

When you run a client verification, or a server verification using the
Generate a main (-main-generator) option, the software automatically
generates a main.

The generated main has three distinct default behaviors.

e It first initializes any variables identified by the option
-main-generator-writes-variables. The default setting for this option
is public.

e It then calls a function which could be considered an initialization function
with the option -function-called-before-main.

e [t then calls any functions identified by the option -main-generator-calls.
The default setting for this option is -main-generator-calls unused.

For more information on the main generator, see “MAIN GENERATOR
OPTIONS (-main-generator) for PolySpace Software”.

Manually Generating a Main

Manually generating a main is often preferable to an automatically generated
main, because it allows you to provide a more accurate model of the calling
sequence to be generated.

There are three steps involved in manually defining the main.

1 Identify the API functions and extract their declaration.

2 Create a main containing declarations of a volatile variable for each type
that is mentioned in the function prototypes.

3 Create a loop with a volatile end condition.

4-31

4 Emulating Your Runtime Environment

4 Inside this loop, create a switch block with a volatile condition.

5 For each API function, create a case branch that calls the function using
the volatile variable parameters you created.

Consider the following example. Suppose that the API functions are:

int funci(void *ptr, int x);
void func2(int x, int y);

You should create the following main:7

void main()
{
volatile int random; /* We need an integer variable as a function
parameter */
volatile void * volatile ptr; /* We need a void pointer as a function
parameter */
while (random) {
switch (random) {

case 1:

random = funci(ptr, random); break; /* One API function call */
default:

func2(random, random); /* Another API function call */

}

}

Main Generator Assumptions

When using the automatic main generator to verify a specific function, the
main objective is to find problems with the function itself. To do this, the
generated main makes assumptions about parameters so that you can focus
on runtime errors (red, grey and orange) related to the function itself.

The main generator makes assumptions about the arguments of called
functions to reduce the number of orange checks in the results. Therefore,
when you see an orange check in your results, it is likely due to the function
itself, not the main.

4-32

Verifying an Application Without a “Main”

However, green checks are computed with the same assumptions. Therefore,
you should be cautious of green checks involving the main itself, especially
when conducting unit-by-unit verification.

4-33

4 Emulating Your Runtime Environment

Specifying Data Ranges for Variables and Functions
(Contextual Verification)

In this section...

“Overview of Data Range Specifications (DRS)” on page 4-34

“Specifying Data Ranges Using DRS Template” on page 4-35

“DRS Configuration Settings” on page 4-38

“Specifying Data Ranges Using Existing DRS Configuration” on page 4-41
“Editing Existing DRS Configuration” on page 4-42

“Specifying Data Ranges Using Text Files” on page 4-43

“Variable Scope” on page 4-47

“Performing Efficient Module Testing with DRS” on page 4-51

“Reducing Oranges with DRS” on page 4-52

Overview of Data Range Specifications (DRS)

By default, PolySpace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on
these inputs could produce an overflow.

The PolySpace Data Range Specifications (DRS) feature allows you to perform
contextual verification, proving that the software works under normal working
conditions. Using DRS, you set constraints on data ranges, and verify the
code within these ranges. This can substantially reduce the number of orange
checks in the verification results.

You can use DRS to set constraints on:

® Global variables
¢ Input parameters for user-defined functions called by the main generator

e Return values for stub functions

4-34

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Note Data ranges are applied during verification level 2 (pass2).

Specifying Data Ranges Using DRS Template

To use the DRS feature, you must provide a list of variables (or functions) and
their associated data ranges.

PolySpace software can analyze the files in your project, and generate a DRS
template containing all the global variables, user defined functions, and stub
functions for which you can specify data ranges. You can then modify this
template to set data ranges.

To use a DRS template to set data ranges:

1 Open the Project for which you want to set data ranges.

2 Ensure that the Project contains all the source files and Include folders you
want to verify, and specifies the Analysis options you want to use for the
verification. The Compile phase of verification must complete successfully
for the software to generate a DRS template.

3 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

4 In the Variable range setup row, select the browse button J

The PolySpace DRS configuration dialog box opens.

4-35

4 Emulating Your Runtime Environment

o

~Select and generate a DRS file

[~ Use information content from an existing DRS file

DRS file location: I E‘a‘l

¥ Stop and edit DRS template after compilation step

Mote: When this option is enabled dicking on the "Start’ button (in the main Launcher window)
will generate a new DRS template file. This file will be opened automatically in the DRS editor at
the end of the compilation step.

Back | Edit | Finish Cancel

5 Select Stop and edit DRS template after compilation step, then click
Finish.

6 Click the Start button Hl

The software compiles the project and generates a DRS template. At
the end of the Compile phase, verification stops and the PolySpace DRS
configuration dialog box opens.

4-36

Specifying Data Ranges for Variables and Functions (Contextual Verification)

il

(] H H | C:\PolySpace\polyspace_projectiresults\drs-template. xml Search: ,@ hd
Mame File |Attributes| Type Main Generator Called Init Mode Init Range | Initialize Pointer | Init Allocated| # Allocated Objects | Global Assert| Global Assert Range
- Globals
-----) single_... [static Lint16 MAIN GEN... ¥ |min..max NO =
----- wl single_. .. |static int16 MAIM GEM... =] min. .max MO =
----- w2 single_... [static int1s IGNORE hd min. .max YES hdl 0.1
----- w3 single_. .. |static uints IGMORE =] min. .max YES = 0..max
----- VL] single_... [static int16 INIT i 25 NO il
----- w5 single_. .. |static int16 INIT =] -100.,100 MO =
----- output_vi single_... |static int32 PERMAMENT =] 0..max MO L=
----- output_v7 single_. .. |static int32 PERMAMENT hd min..0 MO =
----- output_v1l single_. .. |static intd MAIM GEM... = min. .max MO =
[H-saved_values single_... [static int16 [127]
[=-User defined functions
[#--generic_validation() zingle_... MAIN GENERATOR. ¥ |
[H-all_values_s32() single_... [static MAIN GENERATOR. [|
[H-all_values_s16() single_... [static MO =]
[H-all_values_u1a() single_... [static MO [
----- functional_ranges() single_. .. |static YES =]
[E-new_speed() single_... [static YES [
new_speed.argl single_. .. |static int32 INIT = |min.. 10
new_speed.arg2 single_... |[static ints INIT ¥]0.30
new_speed.arg3 single_. .. |static uintd INIT ™ |30..max
inew_speed.return [single_... |static int32
[H-reset_temperature() single_... [static MAIN GENERATOR ;I
[H--unused_fonction() single_... [static MAIN GENERATOR LI
[=1-Stubbed functions
E---SEND_MESSAGEO include. h |extern
SEND_MESSAGE.argl|include.h int32
[=-SEND_MESSAGE.arg2 indude.h const intd * SINGLE LI
EMD_MESSAGE. Jincdude.h |const ints PERMAMENT | = fmin..max

Back | Edit | Finish Cancel

Note The DRS template file is generated in your results folder, named
drs-template.xml.

7 Specify the data ranges for global variables, user-defined function
inputs, and stub-function return values. For more information, see “DRS
Configuration Settings” on page 4-38.

8 Click ‘;g (Save DRS as), and save your DRS configuration file to a location
other than the results folder.

4-37

4 Emulating Your Runtime Environment

Caution Do not save your DRS configuration file in the results folder.
The results folder is overwritten each time you launch a verification, so
your data ranges may be lost.

9 Click Finish. The PolySpace DRS configuration dialog box closes.

DRS Configuration Settings

The PolySpace DRS Configuration dialog box allows you specify data ranges
for all the global variables, user defined functions, and stub functions in
your project. The following table describes the parameters in the DRS
Configuration interface.

Column

Settings

Name

Displays the list of variables and functions in your
Project for which you can specify data ranges. This
Column displays three expandable menu items:

e Globals — Displays a list of all global variables in
the Project.

¢ User defined functions — Displays a list of all
user-defined functions in the Project. Expand any
function name to see a list of the input arguments for
which you can specify a data range.

* Stubbed functions — Displays a list of all stub
functions in the Project. Expand any function name
to see a list of the return values for which you can
specify a data range.

File

Displays the name of the source file containing the
variable or function.

Attributes

Displays information about the variable or function. For
example, static variables display static.

Type

Displays the variable type.

4-38

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Column

Settings

Main Generator
Called

Applicable only for user-defined functions. Specifies
whether the main generator calls the function:

MAIN GENERATOR — Main generator may call
this function, depending on the value of the
-main-generator-calls parameter.

NO — Main generator will not call this function.

YES — Main generator will call this function.

Init Mode

Specifies how the software assigns a range to the
variable:

MAIN GENERATOR — Variable range is assigned
depending on the settings of the main generator
options -main-generator-writes-variables and
-no-def-init-glob.

IGNORE — Variable is not assigned to any range, even if
a range 1s specified.

INIT — Variable is assigned to the specified range only
at initialization, and keeps the range until first write.

PERMANENT — Variable is permanently assigned to the
specified range. If the variable is assigned outside this
range during the program, no warning is provided.
Use the globalassert mode if you need a warning.

Global pointers support only INIT mode.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

4-39

4 Emulating Your Runtime Environment

Column

Settings

Init Range

Specifies the minimum and maximum values for the
variable. You can use the keywords min and max to
denote the minimum and maximum values of the
variable type. For example, for the type long, min and
max correspond to -2°31 and 2731-1 respectively.

You can also use hexadecimal values. For example:
0x12..0x100

Initialize
Pointer

Applicable only to pointers.Specifies how the main
generator initializes the pointed variable:

® May-be NULL — Main generator initializes the pointed
variable as full range.

® Not Null — The pointed variable is never initialized
as a null pointer.

® Null — Main generator initializes the pointed variable
as NULL.

Init Allocated

Applicable only to pointers.Specifies how the pointed
object is written:

® MAIN GENERATOR — Mode is assigned depending on the
settings of the main generator.

® IGNORE — Pointed object will not be written.

® SINGLE — Only write to the pointed object or the first
element in an array. This setting is useful for stubbed
function parameters.

® MULTI — Write to the complete object pointed at. For
example, all elements in an array will be written.

Allocated
Objects

Applicable only to pointers.Specifies the maximum
number of allocated objects.

4-40

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Column Settings

Global Assert Specifies whether to perform an assert check on
the variable at global initialization, and after each
assignment.

Global Assert Specifies the minimum and maximum values for the

Range range you want to check.

Specifying Data Ranges Using Existing DRS
Configuration

Once you have created a DRS configuration file for a Project, you can reuse
the data ranges for subsequent verifications.

To specify an existing DRS configuration file for your Project:
1 Open the Project.

2 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

3 In the Variable range setup row, select the browse button J

The PolySpace DRS configuration dialog box opens.

4-41

4 Emulating Your Runtime Environment

o

~Select and generate a DRS file

¥ Use information content from an existing DRS file

DRS file location: IC:'nFDIySpace'npDlyspaCEJ:uru:uject'n,drs_cu:unﬁg.xml

[~ Stop and edit DRS template after compilation step

Mote: When this option is enabled dicking on the "Start’ button (in the main Launcher window)
will generate a new DRS template file. This file will be opened automatically in the DRS editor at
the end of the compilation step.

Back | Edit | Finish Cancel

4 Select Use information content from an existing DRS file.

5 Specify the DRS file location, or click the Browse button = to select
the DRS configuration file you want to use.

6 Click Finish.
The PolySpace DRS configuration dialog box closes.

7 Select File > Save Project to save your Project settings, including the
DRS file location.

The software uses the specified DRS configuration file the next time you
launch a verification.

Editing Existing DRS Configuration
Once you have created a DRS configuration file for your Project, you can edit
the configuration using the PolySpace DRS configuration interface.

To edit an existing DRS configuration:

1 Open the Project.

4-42

Specifying Data Ranges for Variables and Functions (Contextual Verification)

2 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

3 In the Variable range setup row, select the browse button J

The PolySpace DRS configuration dialog box opens.

JNT=TE

= | H | C:\PolySpace \polyspace_project\drs_config. xml Search: ﬁ) hd

File |Attributes| Type |Main Generator Called| InitMode | Init Range | Initialize Pointer | Init Allocated | # Allocated Objects| Global Assert | Global Assert Range

..

---User defined functions
---Sb_lbbed functions
-Mon applicable

Back | Edit | Finish | Cancel

4 Specify the data ranges for global variables, user-defined function inputs,
and stub-function return values.

5 Click I;; (Save DRS), to save your DRS configuration file.
6 Click Finish.

The PolySpace DRS configuration dialog box closes.

Specifying Data Ranges Using Text Files
To use the DRS feature, you must provide a list of variables (or functions) and
their associated data ranges.

You can specify data ranges using the PolySpace DRS configuration interface

(see “Specifying Data Ranges Using DRS Template” on page 4-35), or you can
provide a text file that contains a list of variables and data ranges.

4-43

4 Emulating Your Runtime Environment

Note If you used the DRS feature prior to R2010a, you created a text file to
specify data ranges. The format of this file has not changed. You can use your
existing DRS text file to specify data ranges.

To specify data ranges using a DRS text file:

1 Create a DRS text file containing the list of global variables (or functions)
and their associated data ranges, as described in “DRS Text File Format”
on page 4-45.

2 Open your Project.

3 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

4 In the Variable range setup row, select the browse button J

The PolySpace DRS configuration dialog box opens.

o

~Select and generate a DRS file

¥ Use information content from an existing DRS file

DRS file location: IC:'FDIySpacE'pDIyspacEJ:rnject'l,drs.txt

[~ Stop and edit DRS template after compilation step

Mote: When this option is enabled dicking on the "Start’ button (in the main Launcher window)
will generate a new DRS template file. This file will be opened automatically in the DRS editor at
the end of the compilation step.

Back | Edit | Finish Cancel

5 Select Use information content from an existing DRS file.

4-44

Specifying Data Ranges for Variables and Functions (Contextual Verification)

6 Specify the DRS file location, or click the Browse button i‘ to select
the DRS text file you want to use.

7 Click Finish.
The PolySpace DRS configuration dialog box closes.

8 Select File > Save Project to save your Project settings, including the
DRS text file location.

When you launch a verification, the software automatically merges the data
ranges in the text file with a DRS template for the project, and saves the
information in the file drs-template.xml, located in your results folder.

You can continue to use the DRS text file for future verifications, or change
the DRS file location to specify the generated file drs-template.xml (See
“Specifying Data Ranges Using Existing DRS Configuration” on page 4-41).

If you specify the .xml template, you can then edit your data ranges using

the DRS configuration interface (see “Editing Existing DRS Configuration”
on page 4-42).

DRS Text File Format
The DRS file contains a list of global variables and associated data ranges.

The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable _name min_value max_value <init|permanent|globalassert>

function_name.return min_value max_value permanent

® variable_name — The name of the global variable.
® min_value — The minimum value for the variable.

® max_value — The maximum value for the variable.

4-45

4 Emulating Your Runtime Environment

® init — The variable is assigned to the specified range only at initialization,
and keeps it until first write.

®* permanent — The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning 1s provided. Use the globalassert mode if you need a warning.

® globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

e function_name — The name of the stub function.

Tips for Creating DRS Text Files

® You can use the keywords "min" and "max" to denote the minimum and
maximum values of the variable type. For example, for the type long, min
and max correspond to -2°31 and 2”31-1 respectively.

® You can use hexadecimal values. For example, x 0x12 0x100 init.
® Supported column separators are tab, comma, space, or semicolon.

¢ To insert comments, use shell style “#”.

® init is the only mode supported for user-defined function arguments.
e permanent is the only mode supported for stub function output.

¢ Function names may be C or C++ functions with blanks or commas. For
example, f(int, int).

¢ Function names can be specified in the short form (“f") as long as no
ambiguity exists.

¢ The function returns either an integral (including enum and bool) or
floating point type. If the function returns an integral type and you specify
the range as a floating point [v0.x, v1.y], the software applies the
integral interval [(int)v0-1, (int)v1+1].

Example DRS Text File

In the following example, the global variables are named X, y, z, w, and v.

x 12 100 init

4-46

Specifying Data Ranges for Variables and Functions (Contextual Verification)

y 0 10000 permanent

z 0 1 globalassert

w min max permanent

v 0 max globalassert
arrayOfInt -10 20 init
s1.id 0 max init
array.c2 min 1 init
car.speed 0 350 permanent

bar.return -100 100 permanent

oI W W I W W I W K

is
is
is
is
is

< =E N X

defined between [12;100] at initialization

permanently defined between [0,10000] even any assignment
checked in the range [0;1] after each assignment

volatile and full range on its declaration type

positive and checked after each assignment.

All cells arrayOfInt are defined between [-10;20] at initializsation
s1.id is defined between [0;2731-1] at initialisation.

All cells array[i].c2 are defined between [-2731;1] at initialization
Speed of Struct car is permanently defined between 0 and 350 Km/h
function bar returns -100..100

Variable Scope

DRS supports variables with external linkages, const variables, and defined
variables. In addition, extern variables are supported with the option
-allow-undef-variables

Note If you set a data range on a const global variable that is used in another
variable declaration (for example as an array size) the variable using the
global variable ranged, is not ranged itself.

The following table summarizes possible uses:

4-47

4 Emulating Your Runtime Environment

init

permanent

globalassert

comments

Integer Ok

Ok

Ok

char, short, int,
enum, long and
long long

If you define

a range in
floating point
form, rounding is
applied.

Real Ok

Ok

Ok

float, double
and long double

If you define

a range in
floating point
form, rounding is
applied.

Volatile No effect

Ok

Full range

Only for int and
real

Structure field Ok

Ok

Ok

Only for int
and real fields,
including arrays
or structures of
int or real fields
(see below)

Structure field in | Ok
array

No effect

No effect

Only when
leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

4-48

Specifying Data Ranges for Variables and Functions (Contextual Verification)

init

permanent

globalassert

comments

Array

Ok

Ok

Ok

Only for int
and real

fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer

Ok

No effect

No effect

You can specify
how the main
generator
initializes the
pointed variable,
and how the
pointed object

1s written.

Union field

Ok

No effect

Ok

See “DRS
Support for
Union Members”
on page 4-50.

Complete
structure

No effect

No effect

No effect

Array cell

No effect

No effect

No effect

Example:
array|[0],
array[10] ...

User-defined
function
arguments

Ok

No effect

No effect

Main generator
calls the function
with arguments
in the specified
range

Stubbed function
return

No effect

Ok

No effect

Stubbed function
returning integer
or floating point

4-49

4 Emulating Your Runtime Environment

4-50

Every variable (or function) and associated data range will be written in the
log file during the compile phase of verification. If PolySpace software does
not support the variable, a warning message is displayed.

Note If you use DRS to set a data range on a const global variable that
is used in another variable declaration (for example as an array size), the
variable that uses the global variable you ranged is not ranged itself.

DRS Support for Structures

DRS can initialize arrays of structures, structures of arrays, etc., as the long
as the last field is explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the
fields. For example, "s.x 20 40 init" is valid, but "s 20 40 init" is not
(because PolySpace cannot determine what fields to initialize).

DRS Support for Union Members

In init mode, the software applies the last range in DRS to the union members
at the given offset.

In globalassert mode, the software checks every globalassert in DRS for
a given offset within the union at every assignment to the union variable
at that offset.

For example:

union position {
int sunroof;
int window;
int locks;

} positionData;

DRS:

positionData.sunroof 0 100 globalassert
positionData.window -100 0 globalassert

Specifying Data Ranges for Variables and Functions (Contextual Verification)

positionData.locks -1 1 globalassert

An assignment to positionData.locks (or other members) will perform
assertion checking on the ranges 0 to 100, -100 to 0, and -1 to 1.

Performing Efficient Module Testing with DRS

DRS allows you to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

e Input data are consumed

® Qutput data are produced

¢ Constant calibrations are used during black box execution influencing
intermediate results and output data.

Using the DRS feature, you can define:

¢ The nominal range for input data

® The expected range for output data

¢ The generic specified range for calibrations

These definitions then allow PolySpace software to perform a single static
verification that performs two simultaneous tasks:

® answering questions about robustness and reliability

¢ checking that the outputs are within the expected range, which is a result

of applying black-box tests to a module

In this context, you assign DRS keywords according to the type of data
(inputs, outputs, or calibrations).

4-51

4 Emulating Your Runtime Environment

Type of Data | DRS Mode Effect on Results Why? Oranges | Selectivity
Inputs permanent Reduces the number | Input data that were | | 1
(entries) of oranges, (compared full range are set to a
with a standard smaller range.
PolySpace verification)
Outputs globalassert| Increases the number | More verification is i —
of oranges, (compared introduced into the
with a standard code, resulting in
PolySpace verification) | both more orange
checks and more
green checks.
Calibration Increases the number | Data that were i l
of oranges, (compared constant are set to
with a standard a wider range.

PolySpace verification)

4-52

Reducing Oranges with DRS

When performing robustness (worst case) verification, data inputs are always
set to their full range. Therefore, every operation on these inputs, even a
simple “one_input + 10” can produce an overflow, as the range of one_input
varies between the min and the max of the type.

If you use DRS to restrict the range of “one-input” to the real functional
constraints found in its specification, design document, or models, you can
reduce the number of orange checks reported on the variable. For example, if
you specify that “one-input” can vary between 0 and 10, PolySpace software
will definitely know that:

® one_input + 100 will never overflow

¢ the results of this operation will always be between 100 and 110

Specifying Data Ranges for Variables and Functions (Contextual Verification)

This not only eliminates the local overflow orange, but also results in more

accuracy in the data. This accuracy is then propagated through the rest of
the code.

Using DRS removes the oranges located in the red circle below.

% of oranges

Oranges due fo
- complexity

Oranges due fo
variables sef fo
full range

Size (lines of code)

Why Is DRS Most Effective on Module Testing?

Removing oranges caused by full-range (worst-case) data can drastically
reduce the total number of orange checks, especially when used on
verifications of small files or modules. However, the number of orange checks
caused by code complexity is not effected by DRS. For more information on
oranges caused by code complexity, see “Subdividing Code” on page 7-37.

This section describes how DRS reduces oranges on files or modules only.

Example

The following example illustrates how DRS can reduce oranges. Suppose that
in the real world, the input “My_entry” can vary between 0 and 10.

4-53

4 Emulating Your Runtime Environment

4-54

PolySpace verification produces the following results: one with DRS and

one without.

Without DRS

With DRS — 2 Oranges Removed + Return
Statement More Accurate

My entry;
Function (void)

X ¥

x = My entry ¢ 100;
X = = 1;
#ipragma Inspecticon Folint =
return =;

0 I

™ S = ¢ B Y N o o Y S P R 0 O
=
it

int

My entry;}
int Function(veid)
{

int xi

® = My
E=x + 1;
fpragma Inspection Point X
return x|

10 1

100;

Mo =] iy W sk) [e

e With “My_entry“ being full range, the
addition “+” is orange,

¢ the result “x” is equal to all values between
[min+100 max]

® Due to previous computations, x+1 can here

overflow too, making the addition “+’orange.

e With “My_entry” being bounded to [0,10],
the addition “+” is green

e the result “x” is equal to [100,110]

¢ Due to previous computations, x+1 can NOT
overflow here, making the addition “+” green
again.

Specifying Data Ranges for Variables and Functions (Contextual Verification)

Without DRS

With DRS — 2 Oranges Removed + Return

Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

H drs. Function.IPT. & E] E| [')Z|

in "drs .. ling & column &
Source code

JC. " T 3 =~ S R ul 1 = 1,
fpragma Inspection Point

ingpection point computed range:
[-2**31+101<=Function:/=2**31-1}

B drs.Function.PT.6 [|[B][X]

in "drz.c" line 8 colurmn 2
Source code

B e bt 2 Tl ek & 2 - T~ - - g
fipragma Inspection Point x

e

inspection point computed range:
{101<=Function:x<=111}

4-55

4 Emulating Your Runtime Environment

4-56

Preparing Source Code for
Verification

® “Stubbing” on page 5-2

® “Preparing Code for Variables” on page 5-13

® “Preparing Code for Built-In Functions” on page 5-18
® “Preparing Multitasking Code” on page 5-19

¢ “Highlighting Known Coding Rule Violations and Run-Time Errors” on
page 5-34

e “Verifying “Unsupported” Code” on page 5-39

5 Preparing Source Code for Verification

Stubbing

In this section...

“Stubbing Overview” on page 5-2
“Manual vs. Automatic Stubbing” on page 5-2
“Adding Precision Constraints Using Stubs” on page 5-6

“Default and Alternative Behavior for Stubbing (PURE and WORST)” on
page 5-7

“Function Pointer Cases” on page 5-10

“Stubbing Functions with a Variable Argument Number” on page 5-10

“Finding Bugs in _polyspace_stdstubs.c” on page 5-12

Stubbing Overview

A function stub is a small piece of code that emulates the behavior of a
missing function.

Stubs do not need to model the details of functions or procedures. They
represent only the effect that the code might have on the remainder of the
system.

Stubbing allows you to verify code before all functions are developed.

Manual vs. Automatic Stubbing

The approach you take to stubbing can have a significant impact on the speed
and precision of your verification.

In PolySpace verification, there are two types of stubs:

* Automatic stubs — When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function prototype (the function declaration). Automatic stubs do not
provide insight into the behavior of the function.

Stubbing

e Manual stubs — You create these stub functions to emulate the behavior
of the missing functions, and manually include the stub functions in the
verification with the rest of the source code.

By default, PolySpace software automatically stubs functions. However, in
some cases you may want to manually stub functions. For example, when:

® Automatic stubbing does not provide an adequate representation of the
code that it represents— both in regard to missing functions and assembly
instructions.

® The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

®* You want to improve the selectivity and speed of the verification.

®* You want to gain precision by restricting return values generated by
automatic stubs.

® You need to work with a function that writes to global variables.

For Example:

void main(void)

{
a=1;
b=0;
a_missing_function(&a, b);
b =1 a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function is commented out,
then the division would be a green "/ ". You could only achieve a red "/ "
with a manual stub.

Note Automatically generated stubs do not deinitialize variables that are
given as parameters.

5-3

5 Preparing Source Code for Verification

5-4

Deciding Which Stub Functions to Provide

In the following section, procedure_to_stub can represent either procedure or
a sequence of assembly instructions which would be automatically stubbed
in the absence of a manual stub. (For more information, refer to “Ignoring
Assembly Code” on page 5-39).

Stubs do not need to model the details of functions or procedures. They
represent only the effect that the code might have on the remainder of the
system.

Consider procedure_to_stub. If it represents,

¢ A timing constraint (such as a timer set/reset, a task activation, a delay, or
a counter of ticks between two precise locations in the code), then you can
stub procedure_to_stub with an empty action (void procedure(void)).
PolySpace does not need a concept of timing because the software takes
into account all possible scheduling and interleaving of concurrent
execution. Therefore, there is no need to stub functions that set or reset a
timer. Declare the variable representing time as volatile.

e An I/O access, such as to a hardware port, a sensor, a read/write of a file, a
read of an EEPROM, or a write to a volatile variable, then,

= You do not need to stub a write access. If you want to do so, stub a write
access to an empty action (void procedure(void)).

= Stub read accesses to "read all possible values (volatile)".

® A write to a global variable, you may need to consider which procedures or
functions write to procedure_to_stub and why. Do not stub the concerned
procedure_to_stub if:

= The variable is volatile.

= The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub manually if:

The variable is a regular variable read by other procedures or
functions.

Stubbing

The variable is a read from a global variable. If you want PolySpace
to detect that the variable is a shared variable, stub a read access.
Copy the value into a local variable.

Follow the Data Flow:

® PolySpace software uses only the C code which is provided.

® PolySpace does not need to be informed of timing constraints because all
possible sequencing is taken into account.

® You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example

The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project). The missing function
copies the value of the src parameter to dest so there would be a division by
Zero, a run-time error..

void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b=11/ a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function is commented out,
then the division would be a green "/ ". You could only achieve a red "/ "
with a manual stub.

5-5

5 Preparing Source Code for Verification

5-6

Default Stubbing Manual Stubbing Function Ignored
void main(void) void a_missing_ function void a_missing function
{ (int *x, int y;) (int *x, int y;)
a=1; {*x=y;} {13
b = 0;
a_missing_function(&a, void main(void) void main(void)
b); { {
b=17/a; a=1; a=1;
// orange division b = 0; b =0;
} a_missing_function(&a, a_missing_function(&a,
b); b);
b=11/ a; b =11/ a;
// red division // green division

Due to the reliance on the software’s default stub, the software ignores the
assembly code and the division " /" is green. You could only achieve the red
division "/" with a manual stub.

Summary

Stub manually to gain precision by restricting return values generated by
automatic stubs, for example, when you work with a function that writes to
global variables.

Stub automatically to minimize preparation time. No run-time error is
introduced by automatic stubbing.

Adding Precision Constraints Using Stubs

You can improve the selectivity of your verification by using stubs to indicate
that some variables vary within functional ranges instead of the full range of
the considered type.

You can apply this approach to:

e Parameters passed to functions.

Stubbing

e Variables that change from one execution to another (mostly globals), for
example, calibration data or mission specific data. These variables might

be read directly within the code, or read through an API of functions.

If a function returns an integer, default automatic stubbing assumes the

function can take any value from the fullrange of the integer type. This can
lead to unproven code (orange checks) in your results. You can achieve more

precise results by providing a manual stub that provides external data that is
representative of the data expected when the code is implemented.

There are a number of ways to model such data ranges within the code. The

following table shows some approaches.

with volatile and assert

with assert and without
volatile

without assert, without
volatile, without "if"

#include <assert.h>

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);
return

#include <assert.h>

extern int other_func(void);
int stub(void)

{

int tmp;

tmp= other_func();
assert(tmp>=1 && tmp<=10);
return

}

extern int other_func(void);
int stub(void)

{

int tmp;

do {tmp= other_func();}
while (tmp<1 || tmp>10);
return tmp;

}

There is no particular advantage to any one of these approaches, except that
the assertions in the first two approaches can produce orange orange checks

in your results.

Default and Alternative Behavior for Stubbing (PURE
and WORST)

External functions are assumed to have no effect (read, write) on global

variables. Any external function for which this assumption is not valid must

be explicitly stubbed.

5-7

5 Preparing Source Code for Verification

Consider the example int f(char *);.

When verifying this function, there are three options for automatic stubbing,
as shown in the following table.

Approach Worst Case Scenario in Stub

Default automatic stubbing
int f(char *x)
{
*X = rand();
return 0;

}

pragma POLYSPACE_WORST
int f(char *x)

{

strcpy(x, "the quick
brown fox, etc.");
return &(x[2]);

}

pragma POLYSPACE_PURE
int f(char *x)

{

return strlen(x);

}

If the automatic stub does not accurately model the function using any of these
approaches, you can use manual stubbing to achieve more precise results.

Stubbing Examples

The following table provides examples of stubbing approaches.

Stubbing

Initial Prototype

With pragma
POLYSPACE_PURE

With pragma
POLYSPACE WORST

PolySpace Default
Automatic Stubbing

void f1(void);

Do nothing

Returns [-2731,

Returns [-2731,

Returns [-2731,

int f2 2/31-1] 2731-1] and assumes | 2/31-1]
(int u); the ability to write into
_ (int *) u Assumes the ability to
int f3 write into *u to any
(int *u); depth and returns
[-2/31, 2/31-1]
' Returns an absolute | Returns AA or (int *) | Returns an absolute
e address (AA) u and assumes the address
(int u); ability to write into
(int *) u
_ Returns an absolute | Returns [-2731, Assumes the ability to
1nt.* f5 address 2731-1] and assumes | write into *u, to any
(int *u); the ability to write into | depth and returns an
*u, to any depth absolute address
Does nothing The function pointed to by ptr is called with a
void f6

(void (*ptr) (int)
param2)

void f7
(void (*ptr)(
param2)

full-range random value for the integer. Rules

for param2 are the same as the preceding rules.

Unless you use the option

permissive-stubber, this function is not
stubbed. The parameter (int *) associated
with the function pointer is too complicated for
PolySpace to stub it, and PolySpace stops. You
must stub this function manually.

Note If (*ptr) contains a pointer as a
parameter, it is not stubbed automatically
and with permissive-stubber, the function
pointer ptr is called with random as a

parameter.

5 Preparing Source Code for Verification

Function Pointer Cases

Function Prototype Comments

The -permissive-stubber option is not

int f(required.
void (*ptr_ok)(int, char, float),

other_typel other_paramil);

_ The -permissive-stubber option is required
int f(because of the “int *” parameter of the function

void (*ptr_ok)(int *, char, float), pointer passed as an argument.
other_typel other_paramil);

113

Both functions, “_reg” and “_seq”, are

_/Oid _r‘eg(ipt) ; automatically stubbed, but the PolySpace

int _seq(void *); software does not exercise the call to the “bar”
function.

unsigned char bar(void) { . . .

return 0; The function that is a parameter is only called

} in stubbed functions if the stubbed function
prototype contains a function pointer as

void main(void){ parameter.

unsigned char x=0; Because in this example, the stubbed function

_reg(_seq(bar)); is a “void *”, it is not a function pointer.

}

Stubbing Functions with a Variable Argument
Number

PolySpace can stub most vararg functions. However:

¢ This stubbing can generate imprecision in pointer verification.

® The stubbing causes a significant increase in complexity and in verification
time.

There are three ways that you can deal with this stubbing issue:

® Stub manually

5-10

Stubbing

® On every varargs function that you know to be pure, add a #pragma
POLYSPACE_PURE "function_1". This action reduces greatly the
complexity of pointer verification tenfold.

For example:
#pragma POLYSPACE_PURE f

void main(void) {
int x = 0;
f(&x);
assert (x ==); // Green assertion,
//orange without use of #pragma POLYSPACE_PURE

e Use #define to eliminate calls to functions. #define is useful with
functions like printf that generate complexity but are not useful for
verification, because they only display a message.

For example:

#ifdef POLYSPACE

#define example_of_function(format, args...)
#else

void example_of_function(char * format, ...)
#endif
void main(void)

{

int 1 = 3;

example_of_function("testl %d", i);

}

polyspace-c -D POLYSPACE

You can place this kind of line in any .c or .h file of the verification.

Note Use #define only with functions that are pure.

5-11

5 Preparing Source Code for Verification

5-12

Finding Bugs in _polyspace_stdstubs.c

By performing a selective orange review, you can sometimes find bugs in the
__polyspace__stdstubs.c file. As for other oranges in the code, some are
useless while others highlight real problems. How can you isolate the useful
oranges in the code?

There are a number of ways to detect the useful oranges:

® Create the file using approaches with are sympathetic to PolySpace needs.
For instance:

e Use functions that return random values instead of local volatile variables.

e Initialize char variables with a random char instead of a volatile int to
reduce the number of overflow checks.

¢ Define an "APPLY_CONSTRAINT()" macro. Such a function always
creates an orange check, but you can easily filter the orange check.

® View oranges manually in the _ polyspace_ stdstubs.c file.You see
many comments that describe where an orange is expected and why.

Read IDP checks to be come familiar with these features.

Example
The orange check in fgets() is one such check.

for (i=0; i < length; i++) /* write in s up to n-1 char */
s[i] = _polyspace_random_char();

S

IDP

This orange check is significant. It means that PolySpace could not conclude
that the buffer which is given as an argument to fgets() is always big
enough to contain the specified character count. The severity of the problem
highlighted depends on how the function is called in the application.

The check should not be orange unless it is highlighting a real issue (unless
fgets() 1s called very frequently. In that case, try using the context-sensitivity
or -inline options).

Preparing Code for Variables

Preparing Code for Variables

In this section...

“Assigning Ranges to Variables/Assert?” on page 5-13

“Checking Properties on Global Variables: Global Assert” on page 5-14
“Modeling Variable Values External to Your Application” on page 5-14
“Initializing Variables” on page 5-15

’

“Verifying Code with Undefined or Undeclared Variables and Functions’
on page 5-17

Assigning Ranges to Variables/Assert?

Abstract

How can I use assert in PolySpace?

Explanation

Assert 1s a UNIX, Linus, and Windows macro that aborts the program if the
test performed inside the assertion proves to be false.

Assert failures are real RTEs because they lead to a processor halt. Because
of this, PolySpace produces checks for the assert failures. The behavior
matches the behavior exhibited during execution, because all execution
paths for unsatisfied conditions are truncated (red and then gray). You
can assume that any verification performed downstream of the assert uses
value ranges which satisfy the assert conditions.

For more information, refer to the use of volatile.

Solution

Assert can be used to constrain input variables to values within a particular
range, for example:

#include <stdlib.h>

5-13

5 Preparing Source Code for Verification

int random(void);

int return_betweens_bounds(int min, int max)

{
int ret; // ret is not initialized
ret = random(); // ret - [-2781, 2731-1]
assert ((min<=ret) && (ret<=max));
// assert is orange because the condition may or may not
// be fulfilled
// ret ~ [min, max] here because all execution paths that don't
// meet the condition are stopped
return ret;

}

Checking Properties on Global Variables: Global
Assert

The global assert mechanism works by inserting a check on each write access
to a global variable to ensure that it is the range specified.

You enable this feature using DRS globalassert mode.

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)” on page 4-34.

Modeling Variable Values External to Your
Application

There are three main considerations:

e Use of volatile variable.
¢ Express that the variable content can change at every new read access.

® Express that some variables are external to the application.
A volatile variable is a variable which does not respect the following axiom:

"If T write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

5-14

Preparing Code for Variables

The value of a volatile variable is "unknown". It can be any value that can be
represented by a variable of its type, and that value can change at any time;
even between two successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for PolySpace.

int return_random(void)
{
volatile int random; // random ~ [-2"31, 2°31-1], although
// random is not initialized
int y;
y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]
random = 100;
y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]
return random; // random ~ [-2"31, 2731-1]

}

Initializing Variables

Consider external, volatile, and absolute address variables in the following
examples.

External

PolySpace works on the principle that a global or static external variable
could take any value within the range of its type.

extern int x;

void f(void)

int y;

y =1 x; [/ orange because x ~ [-2"31, 2731-1]

y =1/ x; // green because x ~ [-2731 -1] U [1, 2"31-1]

5-15

5 Preparing Source Code for Verification

For more information on color propagation, refer to “Before You Review
PolySpace Results” on page 8-2.

For external structures containing fields of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default
behavior is that these pointers do not point to any valid function. For
meaningful results, you need to define these variables explicitly.

Volatile

volatile int x; // x ~ [-2"81, 2731-1], although x has not been
initialised

¢ [f xis a global variable, the NIV is green.

e [fxis a local variable, the NIV is always orange.

Absolute Addressing

The content of an absolute address is always considered to be potentially
uninitialized (NIV orange):

int y;
void f1(void) {
#define X (* ((int *)0x20000))

// NIV on X is orange
}

void f2(void) {
int *p = (int *)0x20000;
p = 100;
y =1 pP; // NIV on *p is orange
}

5-16

Preparing Code for Variables

Verifying Code with Undefined or Undeclared
Variables and Functions

The definition and declaration of a variable are two different but related
operations.

Definition

¢ for a function: the body of the function has been written: int f(void)
{ return 0; }

¢ for a variable: a part of memory has been reserved for the variable: int

X; or extern int x=0;

When a variable is not defined, you must specify the option Continue
even with undefined global variables (-allow-undef-variable) before
you start a verification. When you specify this option, PolySpace software
considers the variable to be initialized, and to potentially have any value in
its full range (see “Initializing Variables” on page 5-15).

When a function is not defined, it 1s stubbed automatically.

Declaration

¢ for a function: the prototype: int f(void);
¢ for an external variable: extern int x;
A declaration provides information about the type of the function or variable.

If the function or variable is used in a file where it has not been declared,
a compilation error results.

5-17

5 Preparing Source Code for Verification

5-18

Preparing Code for Built-In Functions

PolySpace stubs all functions that are not defined within the verification.
Polyspace provides an accurate stub for all the functions defined in the
standard libc, taking into account functional aspects of the function.

All the functions are declared in the standard list of headers, and can be
redefined using their own definitions by invalidating the associated set of
functions:

e Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h (setjmp’ and ’longjmp’ functions are partially implemented
— see <polyspace>/cinclude/_polyspace_ _stdstubs.c), signal.h
(‘signal' and 'raise' functions are partially implemented. For more
information, see <polyspace>/cinclude/_ polyspace__stdstubs.c),
stdio.h, stdarg.h, stdlib.h, string.h,and time.h.

e Using D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions declared
only in strings.h, unistd.h, and fcntl.h.

These functions can be redefined and analyzed by PolySpace by invalidating
the associated set of functions or only the specific function using D
__polyspace_no_<function name>. For example, If you want to redefine the
fabs () function, add the D _ polyspace_no_fabs directive and add the
code of your own fabs () function in a PolySpace verification.

There are five exceptions to the preceding rules. The following functions
which deal with memory allocation can not be redefined: malloc(),
calloc(), realloc(), valloc(), alloca(), built in malloc() and
__built_in_alloca().

Preparing Multitasking Code

Preparing Multitasking Code

In this section...

“PolySpace Software Assumptions” on page 5-19
“Modelling Synchronous Tasks” on page 5-20

“Modelling Interruptions and Asynchronous Events, Tasks, andThreads”
on page 5-22

“Are Interruptions Maskable or Preemptive by Default?” on page 5-24
“Shared Variables” on page 5-26

“Mailboxes” on page 5-29

“Atomicity (Can an Instruction Be Interrupted by Another?)” on page 5-31

“Priorities” on page 5-33

PolySpace Software Assumptions

This section describes the default behavior of the PolySpace software. If your
code does not conform to these assumptions, before starting verification, you
must make minor modifications to the code.

The assumptions are:

¢ The main procedure must terminate for entry-points (or tasks) to start.

e All tasks or entry-points start after the end of the main procedure without
any predefined basis regarding the sequence, priority, or preemption. If an
entry-point is seen as dead code, it is because the main procedure contains
a red error and therefore does not terminate.

¢ PolySpace considers that there is no atomicity, nor timing constraints.
¢ Only entry points with void any name (void) as prototype are considered.
The MathWorks recommends that you read this entire section before applying

the rules described. Some rules are mandatory while other rules allow you to
gain selectivity.

5-19

5 Preparing Source Code for Verification

5-20

Modelling Synchronous Tasks

In some circumstances, you must adapt your source code to allow synchronous
tasks to be taken into account.

Suppose that an application has the following behavior:

® Once every 10 ms: void tsk_10ms(void);
® Once every 30 ms: ...
® Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and
always return control to the calling context. For example:

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

However, if you specify each entry-point at launch using the option:
polyspace-c -entry-points tsk_10ms,tsk_30ms,tsk_50ms

then the results are not valid, because each task is called only once.

To address this problem, you must specify that the tasks are purely sequential
— that is, that they are functions to be called in a deterministic order. You
can do this by writing a function to call each of the tasks in the correct
sequence, and then declaring this new function as a single task entry point.
Solution 1

Write a function that calls the cyclic tasks in the right order; an exact
sequencer. This sequencer is then specified at launch time as a single task

entry point.

This solution requires knowledge of the exact sequence of events.

Preparing Multitasking Code

For example, the sequencer might be:

void one_sequential_ C_function(void)
{

while (1) {

tsk_10ms ()

tsk_10ms ()

tsk_10ms ()

(

)

)

(

)
)
)
);

bl

tsk_30ms
tsk_10ms (
tsk_10ms (

;
tsk_50ms ();

and the associated launching command:
polyspace-c -entry-points one_sequential C_function
Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution is less precise but quick to code, especially for complicated
scheduling:

For example, the sequencer might be:

void upper_approx_C_sequencer(void)

{

volatile int random;

while (1) {
if (random) tsk_10ms(
if (random) tsk_30ms(
if (random) tsk_50ms(
if (random) tsk_100ms

)
)
)
(

);

5-21

5 Preparing Source Code for Verification

5-22

and the associated launching command:

polyspace-c -entry-points upper_approx_C_sequencer

Note If this is the only entry-point, then it can be added at the end of the
main procedure rather than specified as a task entry point.

Modelling Interruptions and Asynchronous Events,
Tasks, andThreads

You can adapt your source code to allow PolySpace software to consider both
asynchronous tasks and interruptions. For example:

void interrupt isr_1(void)

{ ...}

Without such an adaptation, interrupt service routines appear as gray (dead
code) in the Viewer. The gray code indicates that this code is not executed
and is not taken into account, so all interruptions and tasks are ignored by
PolySpace.

The standard execution model is such that the main procedure is executed
initially. Only if the main procedure terminates and returns control (i.e. if it
1s not an infinite loop and has no red errors) do the entry points start, with
all potential starting sequences being modelled automatically. You can adopt
several different approaches to implement the required adaptations.

Solution 1: Where Interrupts (ISRs) Cannot Ppreempt Each Other
If the following conditions are fulfilled:

¢ The interrupt functions it_1 and it_2 (say) can never interrupt each other.
e Each interrupt can be raised several times, at any time.
¢ The functions are returning functions, and not infinite loops.

Then these non preemptive interruptions may be grouped into a single
function, and that function declared as an entry point.

Preparing Multitasking Code

void it _1(void);
void it 2(void);
void all_interruptions_and_events(void)
{ while (1) {
if (random()) it _1();
if (random()) it _2();
ce)
}

The associated launching command would be:

polyspace-c -entry-points all_interruptions_and_events
Solution 2: Where Interrupts Can Preempt Each Other

If two ISRs can each be interrupted by the other, then:

e Encapsulate each of them in a loop.
® Declare each loop as a entry point.
One approach is to replace the original file with a PolySpace version.

original_file.c
void it_1(void)

{
return;
}
void it_2(void)
{
return;
}
void one_task(void)
{
return;
}
polyspace.c

5-23

5 Preparing Source Code for Verification

5-24

void polys_ it 1(void)
{

while (1)

if (random())

it 1();

}

void polys_it 2(void)
{
while (1)
if (random())
it 2();
}

void polys _one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be:

polyspace-c -entry-points polys_it 1,polys_it 2,polys_one_task

Are Interruptions Maskable or Preemptive by
Default?

For user interruptions, no implicit critical section is defined: you must write
all of them manually.

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

This occurs because PolySpace does not distinguish between interrupt service
routines and tasks. If you specify an interrupt to be a "-entry-point" entry
point, it has the same priority level as the other procedures declared as tasks
("-entry-points" option). Because PolySpace makes an upper approximation
of all scheduling and all interleaving, in this case, that includes the

Preparing Multitasking Code

possibility that the ISR might be interrupted by any other task. More
paths modelled than could happen during execution, but this has no adverse
effect on of the results obtained except that more scenarios are considered
than could happen during “real life” execution - and the shared data is not
seen as being protected.

To address this, the interrupt must be embedded in a specific procedure that
uses the same critical section as the interrupt used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a nonmaskable interruption.

Original files:

int shared_x ;

void my_main_task(void)
{

/1

MASK_IT;

shared_x = 12;
UMASK_IT;

/1

}

int shared_x ;
void interrupt my_real_it(void)
{ /* which is by specification unmaskable */

shared_x = 100;
}

Additional C files required by PolySpace:
extern void my_real _it(void); // declaration required

#define MASK_IT pst_mask_it()
#define UMASK_IT pst_unmask_it ()

void pst_mask_it(void); // functions used to model the critical sectit
void pst_unmask_it(void); //

5-25

5 Preparing Source Code for Verification

void other_task (void)

{
MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launch command:

polyspace-c \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unmask_it:table"

Shared Variables

When you launch PolySpace without any options, all tasks are examined as
though concurrent and with no assumptions about priorities, sequence order,
or timing. Shared variables in this context are considered unprotected, and
so are shown as orange in the variable dictionary.

The software uses the following explicit protection mechanisms to protect
the variables:
¢ (Critical section

¢ Mutual exclusion

e “Critical Sections” on page 5-26
e “Mutual Exclusion” on page 5-28

® “Semaphores” on page 5-29

Critical Sections

This is the most common protection mechanism found in applications, and
is simple to represent in PolySpace:

5-26

Preparing Multitasking Code

® If one entry-point makes a call to a particular critical section, all other
entry-points are blocked on the "critical-section-begin" function call until
the originating entry-point calls the "critical-section-end" function.

® The code between two critical sections is not atomic.

® The code is a binary semaphore, so there is only one token per label (CS1 in
the following example). Unlike many implementations of semaphores, it is
not a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example:

Original Code

void proci(void)

{

MASK_IT;

x = 12; // X is protected
y = 100;

UMASK_IT;

}

void proc2(void)

{

MASK_IT;

x = 11; // X is protected
UMASK_IT;

y = 101; // Y is not protected
}

File Replacing the Original Include File
void begin_cs(void);
void end_cs(void);

#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command Line to Launch PolySpace
polyspace-c \

-entry-point proci,proc2 \
-critical-section-begin"begin_cs:label_1" \

5-27

5 Preparing Source Code for Verification

5-28

-critical-section-end"end_cs:label_1"

Mutual Exclusion

Mutual exclusion between tasks or interrupts can be implemented while
preparing PolySpace for launching.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time,
you may want PolySpace to take that into account. Consider the following
example:

These entry points cannot overlap:

e t] and t3
e t2 t3 and t4

These entry-points can overlap:

e t1 and t2
e t]1 and t4

Before launching verification, the names of mutually exclusive entry-points
are placed on a single line:

polyspace-c -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The file myExclusions.txt is also required in the current folder. This file
contains:

t1 t3
t2 t3 t4

Preparing Multitasking Code

Semaphores

Although you can implement the code in C, you cannot take into account a
semaphore system call in PolySpace. Nevertheless, critical sections may be
used to model the behavior.

Mailboxes

Suppose that an application has several tasks, some of which post messages
in a mailbox while other tasks read the messages asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. The source files will be unavailable because
the procedures are part of the OS libraries, but the mechanism needs to be
modelled for meaningful verification.

By default, PolySpace automatically stubs the missing OS send and receive
procedures. The stub exhibits the following behavior:

¢ For send (char *buffer, int length), the content of the buffer is written only
when the procedure is called.

® For receive (char *buffer, int *length), each element of the buffer contains
the full range of values appropriate to that data type.

You can use this mechanism and other mechanisms, with different levels
of precision.

Let PolySpace stub ® Quick and easy to code.

automaticall . . .
y * imprecise because there is no

direct connection between a
mailbox sender and receiver. That
means that even if the sender is
only submitting data within a
small range, the full data range
appropriate for the type or types
are for the receiver data.

Provide a real mailbox mechanism e Costly (time consuming) to
implement.

e (Can introduce errors in the stubs.

5-29

5 Preparing Source Code for Verification

5-30

® Provides little additional benefit
when compared to the upper
approximation solution.

Provide an upper approximation Models the mechanism so that new

of the mailbox read from the mailbox reads one of
the recently posted messages, but
not necessarily the last message.

® Quick and easy to code.

* gives precise results

Consider the following detailed implementation of the upper approximation
solution:

polyspace_mailboxes.h

typedef struct _r {

int length;

char content[100];

} MESSAGE;
extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive (MESSAGE *msg);

polyspace_mailboxes.c

#include "polyspace_mailboxes.h"
MESSAGE mailbox;

void send(MESSAGE * msg)

{

volatile int test;

if (test) mailbox = *msg;

// a potential write to the mailbox

}

void receive (MESSAGE *msg)
{

Preparing Multitasking Code

*msg = mailbox;

}

Original code

#include "polyspace_mailboxes.h"

void t1(void)

{

MESSAGE msg_to_send;

int 1i;

for (i=0; i<100; i++)

msg_to_send.content[i] = i;
msg_to_send.length = 100;
send(&msg_to_send);

}
void t2(void)

{

MESSAGE msg_to_read;

receive (&msg_to_read);

}

PolySpace then proceeds on the assumption that each new read from the
mailbox reads a message, but not necessarily the last message.

The associated launching command is:
polyspace-c -entry-points t1,t2

Atomicity (Can an Instruction Be Interrupted by
Another?)

Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

5-31

5 Preparing Source Code for Verification

5-32

PolySpace does not take into account either CPU instruction decomposition or
timing considerations.

PolySpace assumes that instructions are never atomic except in the case of
read and write instructions. PolySpace makes an upper approximation of
all scheduling and all interleaving. There are more paths modelled than
could be implemented during execution, but given that all possible paths
are always analyzed, this has no adverse effect on of the results.

Consider a 16-bit target that can manipulate a 32-bit type (an int, for
example). In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 1s written it. If the operation is not atomic
it could be interrupted by another instruction in the middle of the write
operation.

e Task 1: Writes OxFF55 to x.

e Task 2: Interrupts task 1. Depending on the timing, the value of x could be
either OxFFO00, 0x0055 or OxFF55.

PolySpace considers write/read instructions atomic, so task 2 can only read
0xFF55, even if X is not protected (see “Shared Variables” on page 5-26).

Critical sections

In terms of critical sections, PolySpace does not model the concept of
atomicity. A critical section guarantees only that once the function associated
with -critical-section-begin is called, any other function making use of the
same label is blocked. All other functions can still continue to run, even if
somewhere else in another task a critical section has been started.

PolySpace verification of Runtime Errors (RTEs) supposes that there was
no conflict when writing the shared variables. If a shared variable is not

protected, the RTE verification is complete and correct.

More information is available in “Critical Sections” on page 5-26.

Preparing Multitasking Code

Priorities

Priorities are not taken into account by PolySpace. However, the timing
implications of software execution are not relevant to the verification
performed by PolySpace, which is the primary reason for implementing
software task prioritization. In addition, priority inversion issues can mean
that the software cannot assume that priorities can protect shared variables.
For that reason, PolySpace makes no such assumption.

While there is no capability to specify differing task priorities, all priorities
are taken into account because the default behavior of the software assumes
that:

¢ All task entry points (as defined with the option -entry-points) start
potentially at the same time;

® The task entry points can interrupt each other in any order, no matter
the sequence of instructions. Therefore, all possible interruptions are

accounted for, in addition to some interruptions which do not actually occur.

If you have two tasks, t1 and t2, in which t1 has higher priority than t2,
use polyspace-c -entry-points t1,t2.

® t1 interrupts t2 at any stage of t2, which models the behavior at execution
time.

® t2 interrupts t1 at any stage of t1, which models a behavior which (ignoring
priority inversion) would never take place during execution. PolySpace has
made an upper approximation of all scheduling and all interleaving.

There are more paths modelled than could happen during execution, but
this has no adverse effect on the results.

5-33

5 Preparing Source Code for Verification

Highlighting Known Coding Rule Violations and Run-Time
Errors

In this section...

“Annotating Code to Indicate Known Coding Rule Violations” on page 5-34

“Annotating Code to Indicate Known Run-Time Errors” on page 5-36

Annotating Code to Indicate Known Coding Rule
Violations

You can place comments in your code that inform PolySpace software of
known or acceptable coding rule violations. The software uses the comments
to highlight, in the Launcher, errors or warnings related to the coding rule
violations. Using this functionality, you can:

¢ Hide known coding rule violations while analyzing new coding rule
violations.

¢ Inform other users of known coding rule violations.
Annotate your code before running a verification:

1 Open your source file using a text editor.
2 Locate the code that violates a coding rule.
3 Insert the required comment.

extern void partial init(int *new_alt);

extern void RTE (void);

/* polyspace<MISRA-C:16.3> A known coding rule violation */
extern void Exec_One_Cycle (int);

extern int orderregulate (wvoid);

extern void Begin Cs (void):

See also “Syntax for Coding Rule Violations” on page 5-35 .

4 Save your file.

5-34

Highlighting Known Coding Rule Violations and Run-Time Errors

5 Start the verification. The software produces a warning if your comments
do not conform to the prescribed syntax, and they do not appear in the
Launcher.

When the verification is complete, or stops because of a compilation error, you
can view all coding rule violations in the Launcher by clicking MISRA C.

Compile | Filter || [~ Hide justifed violated rules i

MISRA C

= | Status Rule File Line Col Justified | Acronym | User Acronym Justification

_E Stats 17.4 example.c 114 21 ;|

& Full Log 17.4 example.c 118 14

—] 16.3 include.h 34 28 Yes A known coding rule violation J
17.4 main.c 18 7
19.10 single_file_private.h |37 0
19.10 |single_file_private.h |38 0 l

In the Acronym, User Acronym and Justification columns, the
information that you provide within your code comments is now visible. In
addition, the Justified cell contains Yes.

To hide coding rule violations that you annotate, select the Hide justified
violated rules check box.

Syntax for Coding Rule Violations
To apply comments to a single line of code, use the following syntax:

/* polyspace<MISRA-C: Rulel[,Rule2[,..]] [: Predefined Acronym |[:
User-defined Acronym]] > [Additional text] */

where

® Square brackets [] indicates optional information.

® Rulet, Rule2, ..are rules (for example, 10.3, 11.5), which are defined
by your MISRA-C rules file (for example, misra-rules.msr). You can also
specify ALL, which covers every coding rule.

® Predefined Acronym, for example, MIN and DEF, allows you to categorize
the coding rule violation with a PolySpace acronym. To see the complete
list of PolySpace acronyms, in the Preferences PolySpace Viewer dialog box,
select the Acronyms tab.

5-35

5 Preparing Source Code for Verification

5-36

® User-defined Acronym allows you to categorize the coding rule violation
with an acronym that you define in the Preferences PolySpace View dialog
box, through the Acronyms tab. You can specify User-defined Acronym
only if you specify Predefined Acronym.

® [Additional text] appears in the Justification column of the MISRA-C
view of the Launcher. Use this text to provide information about the coding
rule violations.

The software applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

To apply comments to a section of code, use the following syntax:

/* polyspace:begin<MISRA-C: Rulel[,Rule2[,..]] [: Predefined
Acronym [: User-defined Acronym]] > [Additional text] */

Code section ...

/* polyspace:end<MISRA-C: Rulel[,Rule2[,..]] [: Predefined
Acronym [: User-defined Acronym]] > [Additional text] */

Annotating Code to Indicate Known Run-Time Errors

You can place comments in your code that inform PolySpace software of
known run-time errors. Through the use of these comments, you can:

¢ Highlight run-time errors:
= Identified in previous verifications.
= That are not significant.

e (Categorize previously reviewed run-time errors.

Therefore, during your analysis of verification results, you can disregard
these known errors and focus on new errors.

Annotate your code before running a verification:

1 Open your source file using a text editor.

Highlighting Known Coding Rule Violations and Run-Time Errors

2 Locate the code that produces a run-time error.

3 Insert the required comment.

if (random int() > 0)
{
V* polyspace<RTE: NTC : OTH : EGC = This run-time error was discovered previously */
Square_Root();

}

Unreachable Code();
See also “Syntax for Run-Time Errors” on page 5-37.

4 Save your file.

5 Start the verification. The software produces a warning if your comments
do not conform to the prescribed syntax, and they do not appear in the
Viewer.

When the verification is complete, open the Viewer. You see run-time errors
in the procedural entities view.

In the Acronym, User Acronym and Comment columns, the information
that you provide within your code comments is now visible. In addition, in
the Reviewed column , the check box is selected.

| Procedural entities f|x ~| Line| Col| ® Details Reviewed| Acronym |User Acronym Comment
|23 Demo 3 |5 229 34 [nl
E-example.c 4|8 82 1 32 jexample.c -
- a7 | 1z | 77 fexamplec r
Rt 85 | 11 | 100 Example.c r
e 2| 85 | 12 | 3 |jexamplec r
29 (6 function retums an initislized value —
| 12 function retums an initisi r
28| 8 function r=tum. r
| 8 the example.c.Square_Root call never terminstzs| W OTH EGC [This run-time srror was discoversd previously|
=N 4| 137 | 12 | 53 |examplec -

Syntax for Run-Time Errors
To apply comments to a single line of code, use the following syntax:

5-37

5 Preparing Source Code for Verification

/* polyspace<RTE: RunTimeErrori[,RunTimeError2[,..]] [:
Predefined Acronym [: User-defined Acronym]]> [Additional text]
*/

where,

® Square brackets [] indicate optional information.

® RunTimeErrori, RunTimeError2, .. are formal PolySpace checks, for
example, OBAI, IDP, and ZDV. You can also specify ALL, which covers every
check.

® Predefined Acronym, for example, MIN and DEF, allows you to categorize
the run-time error with a PolySpace acronym. To see the complete list of
PolySpace acronyms, in the Preferences PolySpace Viewer dialog box, click
the Acronyms tab.

e User-defined Acronym allows you to categorize the run-time error with
an acronym that you define in the Preferences PolySpace View dialog box,
through the Acronyms tab. You can specify User-defined Acronym only
if you specify Predefined Acronym.

® [Additional text] appears in the Comment column of the procedural
entities view of the Viewer. Use this text to provide information about
the run-time errors.

The software applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

To apply comments to a section of code, use the following syntax:
/* polyspace:begin<RTE: RunTimeErrori[,RunTimeError2([,..]] [:
Predefined Acronym [: User-defined Acronym]] > [Additional text]
*/

Code section ...
/* polyspace:end<RTE: RunTimeErrori[,RunTimeError2/[,..]] [:

Predefined Acronym [: User-defined Acronym]] > [Additional text]
*/

5-38

Verifying “Unsupported” Code

Verifying “Unsupported” Code

In this section...

“Ignoring Assembly Code” on page 5-39
“Dealing with Backward “goto” Statements” on page 5-47
“Types Promotion” on page 5-50

Ignoring Assembly Code

You can ignore assembly code during verification using the Discard
assembly code option (-discard-asm). Using this option allows you to work
with many instances of assembly code within a C application, but it is not
always a valid route to take.

Ignored assembly instructions change the behavior of the code. For example,
a write access to a shared variable can be written in assembly code. If this
write access is ignored, the verification may produce inaccurate results.

In such cases, refer to “Stubbing” on page 5-2, which applies to functions
as well as to stubbed instructions.

PolySpace is designed for C code only. In most cases, the option -discard-asm
combined with -asm-begin and -asm-end can be used to instruct PolySpace
to discard a number of assembly code constructs.

e “Example: Ignore All Statements; the Rest of the Function Remains
Unchanged” on page 5-40

¢ “Example: Automatic Stubbing” on page 5-42

¢ “Examples: Empty Body” on page 5-43

e “Example: #asm and #endasm Support” on page 5-44

e “Example: What to Do If -discard-asm Fails to Parse an asm Code Section”
on page 5-45

5-39

5 Preparing Source Code for Verification

5-40

Example: Ignore All Statements; the Rest of the Function
Remains Unchanged

Discarding assembly code by using the -discard-asm is an acceptable
approach where ignoring the assembly instructions will have no impact on
the remainder of the function.

For more information, see the “Manual versus automatic stubbing”.

int f(void)
{

asm ("% reg val; mtmsr val;");
asm("\tmove.w #$2700,sr");
asm("\ttrap #7");

asm(" stw r11,0(r3) ");

assert (1); // is green

return 1;

}

int other_ignored6(void)

{

#define A _MACRO(bus_controller_mode) \
asm__ volatile("nop"); \

__asm__ volatile("nop"), \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \

asm__ volatile("nop"); \

)
asm volatile("nop")
en

assert (1); // is gre

A_MACRO(x) ;
assert (1); // is green
return 1;
}
int pragma_ignored(void)
{
#pragma asm

SRST
#pragma endasm
assert (1); // is green

}

Verifying “Unsupported” Code

int other_ignored2(void)
{

asm "% reg val; mtmsr val;";

asm mtmsr val;

assert (1); // is green

asm ("px = pm(0,%2); \
0 = px1; \
1 px2;"

"=d" (data_16), "=d" (data_32)
"y" ((UI_32 pm *)ram_address):
"px");

assert (1); // is green

}

o°

= o°

int other_ignored1(void)
{
__asm
{MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8}
assert (1); // is green

}

int GNUC_include (void)

{

extern int _ P (char *__ pattern, int _ flags,
int (*__errfunc) (char *, int),

unsigned *_ pglob) _ asm__ ("glob64");
_asm__ ("rorw $8, %w0" \

II=r\II (_V) \

"0" ((guint16) (val)));
_asm__ ("st g14,%0" : '=m" (*(AP)));
_asm(llll \

"=p" (__t.c) \

"0" ((((union { int i, j; } *) (AP))++)->i));
assert (1); // is green
return (int) 3 __asm__ ("% reg val");

5-41

5 Preparing Source Code for Verification

}

int other_ignored3(void)
{
__asm {ldab Oxffff,0;trapdis;};
__asm {ldab Oxffff,1;trapdis;};
assert (1); // is green
asm__ ("% reg val");
_asm__ ("mtmsr val");
assert (1); // is green

return 2;
}
int other_ignored4(void)
{
asm {
port_in: /* byte = port_in(port); */
mov EAX, O
mov EDX, 4[ESP]
in AL, DX
ret

port_out: /* port_out(byte,port);

mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret }
assert (1); // is green

}

Example: Automatic Stubbing

When a function is preceded by asm, it is stubbed automatically, even if a

body is defined.

asm int m(int tt);

You must use the -discard-asm option.

5-42

Verifying “Unsupported” Code

Examples: Empty Body

Using the option, #pragma inline_asm(list of functions), has the same
effect.

You must use the -discard-asm option.

pragma inline_asm(ex1, ex2) // the 2 functions ex1 and ex2 will be
//stubbed, even if their body is defined

int ex1(void)
{
% reg val;
mtmsr val;
return 3; // is ignored

b

int ex2(void)
{
% reg val;
mtmsr val;
assert (1); // is ignored
return 3;

b

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)

{
% reg val;
mtmsr val; // is ignored
return 3;
};
asm int h(int tt) // using the qualifier asm is equivalent
// to #pragma inline_asm
{
% reg val; // is 1ignored
mtmsr val; // is ignored

5-43

5 Preparing Source Code for Verification

return 3; // is ignored
b
void f(void) {
int x;
x = ex1(); // ex1 is stubbed : x is full-range
X = ex2(); // x is full-range
X = ex3(); // x is full-range
x = h(3); // x is full-range

}

For more information, see “Stubbing” on page 5-2.

Example: #asm and #endasm Support

Using #asm and #endasm allows fragments of assembly code to be disregarded
by PolySpace, regardless of whether or not you use the -discard-asm.

Consider the following example.

void test(void)

{
#asm
mov _as:pe, reg
jre _nop
#endasm
int r;
r=0;
r++;
}
Explanation

By default, using #asm and #endasm requires using the -asm-begin and
-asm-end options. The options to enable this feature are accessible through
the PolySpace Launcher or in batch mode.

When launching PolySpace in batch mode, use this syntax:

5-44

Verifying “Unsupported” Code

polyspace-c -asm-begin asm -asm-end endasm
To enable this option using the Launcher:

1 In the Analysis options, select Compliance with standards > Embedded
assembler.

2 Select Handle #pragma asm.endasm directives.

The Handle #pragma asm/endasm directives dialog box opens.

Handle #pragma asm/endasm directives ﬂ
#pragma asm list [-azm-begin] #pragma endasm list [-asm-end]
EL] endasm
will_be_ignored was_ignored
= Add line = Remove line |
Ok Cancel |

3 Select Add line.
4 In the #pragma asm list [-asm-begin] column, enter asm.

5 In the #pragma enasm list [-asm-end] column, enter endasm.

6 Click Ok.

Example: What to Do If -discard-asm Fails to Parse an asm

Code Section

Occasionally, the -discard-asm option does not deal with a particular
assembly code construction, particularly when the code fragment is
compiler-specific.

5-45

5 Preparing Source Code for Verification

5-46

Note Consider using the -asm-begin and -asm-end options instead of the
following approach.

int x=12;

void f(void)
{
#pragma will be_ignored
x =0;
x= 1/x; // no color is displayed
// not even C code
#pragma was_ignored
10 x++;
11 x=15;
12 }
13
14 void main (void)
15 {
16 int y;
17 (0);
18 y=1/x+ 1/ (x-15); // Red zZDV, x is equal to 15
19
20 }

O ~NOO O WN =

©

As shown in this example, any text or code placed between the two #pragma
statements is ignored by the verification. This allows any unsupported
construction to be ignored without changing the meaning of the original code.

The options to enable this feature are accessible through the PolySpace
Launcher or in batch mode.

To enable this option in batch mode, enter the following command:
polyspace-c -asm-begin will be_ignored -asm-end was_ignored

To enable this option using the Launcher:

Verifying “Unsupported” Code

1 In the Analysis options, select Compliance with standards > Embedded
assembler.

2 Select Handle #pragma asm.endasm directives.

The Handle #pragma asm/endasm directives dialog box opens.

Handle #pragma asm/endasm directives ﬂ
#pragma asm list [-azm-begin] #pragma endasm list [-asm-end]
EL] endasm
will_be_ignored was_ignored
= Add line = Remove line |
Ok Cancel |

3 Select Add line.
4 In the #pragma asm list [-asm-begin] column, enter will be_ ignored.

5 In the #pragma enasm list [-asm-end] column, enter was_ignored.

6 Click Ok.

Dealing with Backward “goto” Statements

PolySpace is not designed to support backward “goto” statements. However,
macros provide a solution. Verifications that includes backward “goto”
statements stop at an early stage, and a message appears saying that
backward “goto” statements are not supported.

Macros provided with the PolySpace software can work around this limitation
as long as the “goto” labels and jump instructions are in the same
code block (and in the same scope).

5-47

5 Preparing Source Code for Verification

To insert these macros into the code:

1 Edit the C file containing the “goto” statements.

2 Add #include pstgoto.h" at the beginning of the file (located in
<PolySpacelInstallDir>/cinclude).

3 Go to the beginning of the block containing the “goto” statements.

4 Insert the USE_1_GOTO(<tag>) macro call after the variable declarations
(local to the block).

5 Insert the EXIT_1_GOTO(<tag>) macro call before the end of this same
block (take care with the closing bracket "}").

6 Replace "goto <tag>" with "GOTO(<tag>)".

For example, the following code would cause a verification to
terminate:

{

/* local variable declarations */
int x;

/* Instructions */

label1l:

goto labeltl

}

You could address this problem as follows:

/* the pstgoto.h file is provided by PolySpace and its path */

{
/* local variable declarations */
int x;

USE_1_GOTO(labell);
/* Instructions */

label1l:

5-48

Verifying “Unsupported” Code

GOTO(labell);

EXIT_1_GOTO(labeld);
}

The code block may contain many instances of backward “goto” statements.
Using matching USE_n_GOTO() and EXIT_n_GOTO() statements addresses this
issue,(for example, USE_2_GOTO(), USE_3_GOTO(), etc.)

Note You must copy pstgoto.h from <PolySpaceInstallDir>/cinclude,
and add it to the list of include folders (-I).

The code block may also use several different tags. You can use multiple “tag”
parameters to address these situations. For example, use:

USE_n_GOTO (<tag 1>, <tag 2>, ..., <tag n>);
EXIT_n_GOTO(<tag 1>, <tag 2>, ..., <tag n>);

Consider the following example.

Original Code Modified Code for Verification
{ {
. USE_1_GOTO (Reset);
Reset:
Reset:
{ {
{ {
if (X) if (X)
goto Reset; GOTO(Reset) ;
} }
{ {
if (Y) if (Y)
goto Reset; GOTO(Reset) ;

5-49

5 Preparing Source Code for Verification

Original Code Modified Code for Verification
} }
} }
EXIT_1_GOTO(Reset);

Types Promotion

¢ “Unsigned Integers Promoted to Signed Integers” on page 5-50
® “What are the Promotions Rules in Operators?” on page 5-51

e “Example” on page 5-51

Unsigned Integers Promoted to Signed Integers

You need to understand the circumstances under which signed integers are
promoted to unsigned.

For example, the execution of the following code would produce an assertion
failure and a core dump.

#include <assert.h>
int f1(void) {

int x = -2;
unsigned int y = 5;
assert(x <=vy);

}

Implicit promotion explains this behavior. In this example, x <= y is
implicitly:

((unsigned int) x) <=y /* implicit promotion since y is unsigned */

A negative cast into unsigned gives a large value. This value can never be <=
5, so the assertion can never hold true.

In this second example, consider the range of possible values for x:

void f2(void)
volatile int random;

5-50

Verifying “Unsupported” Code

unsigned int y = 7;
int x = H
(x> -7 8&& X <=y);

assert (x>=0 && x<=7);

The first assertion is orange; it may cause an assert failure. However, given
that the range of x after the first assertion is not [-7 .. 7], but rather [0 .. 7
], the second assertion would hold true.

What are the Promotions Rules in Operators?

Familiarity with the rules applying to the standard operators of the C
language helps you to analyze those orange and red checks which relate to
overflows on type operations. Those rules are:

¢ Unary operators operate on the type of the operand.
¢ Shifts operate on the type of the left operand.
® Boolean operators operate on Booleans.

¢ Other binary operators operate on a common type. If the types of the two
operands are different, they are promoted to the first common type which
can represent both of them.

® Be careful of constant types.

® Be careful when verifying any operation between variables of different
types without an explicit cast.

Example
Consider the integral promotion aspect of the ANSI-C standard (see 6.2.1 in
ISO/IEC 9899:1990). On arithmetic operators like +, -, ¥, % and / , an integral

promotion is applied on both operands. For PolySpace, that can imply an
OVFL or a UNFL orange check.

2 extern char random_char(void);
3 extern int random_int(void);

4

5 void main(void)

6 {

5-51

5 Preparing Source Code for Verification

5-52

7 char c1 = random_char();

8 char c2 = random_char();

9 int i1 = random_int();

10 int i2 = random_int();

11

12 i1 = if i2; // A typical OVFL/UNFL on a + operator
13 ci cl + c2; // An OVFL/UNFL warning on the c1

14 // assignment [from int32 to int8]

15 }

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

extern char random_char(void);

2
3
4 void main(void)
5 {

6 char c1 = random_char();
7

8

9

1

1

char c2 random_char();

cl = (char)((int)c1 + (int)c2); // Warning OVFL: due to
// integral promotion

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

Integral promotion requires that the abstract machine must promote the type
of each variable to the integral target size before realizing the arithmetic
operation and subsequently adjusting the assignment type. See the preceding
equivalence example of a simple addition of two char.

Integral promotion respects the size hierarchy of basic types:

® char (signed or not) and signed short are promoted to int.

Verifying “Unsupported” Code

® unsigned short 1s promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (because of a 16-bit
target, for example) then unsigned short is promoted to unsigned int.

e Other types such as(un)signed int, (un)signed long int, and (un)signed
long long int promote themselves.

5-53

5 Preparing Source Code for Verification

5-54

Running a Verification

® “Types of Verification” on page 6-2
¢ “Running Verifications on PolySpace Server” on page 6-3
¢ “Running Verifications on PolySpace Client” on page 6-22

¢ “Running Verifications from Command Line” on page 6-27

6 Running a Verification

6-2

Types of Verification

You can run a verification on a server or a client.

Use...

For...

Server

¢ Best performance
e Large files (more than 800 lines of code including comments)

e Multitasking

Client

® An alternative to the server when the server is busy

® Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

Running Verifications on PolySpace® Server

Running Verifications on PolySpace Server

In this section...

“Starting Server Verification” on page 6-3
“What Happens When You Run Verification” on page 6-4
“Running Verification Unit-by-Unit” on page 6-5

“Managing Verification Jobs Using the PolySpace Queue Manager” on
page 6-7

“Monitoring Progress of Server Verification” on page 6-8

“Viewing Verification Log File on Server” on page 6-11

“Stopping Server Verification Before It Completes” on page 6-13
“Removing Verification Jobs from Server Before They Run” on page 6-14
“Changing Order of Verification Jobs in Server Queue” on page 6-15
“Purging Server Queue” on page 6-16

“Changing Queue Manager Password” on page 6-18

“Sharing Server Verifications Between Users” on page 6-18

Starting Server Verification

Most verification jobs run on the PolySpace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Select the Send to PolySpace Server check box next to the Start button
in the middle of the Launcher window.

send to PolySpace Server [v ¥ Start |

6 Running a Verification

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

4 (Click Start.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 6-4.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

5 When you see the message Verification process completed, click OK
to close the message dialog box.

6 For information on downloading and viewing your results, see “Opening
Verification Results” on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI® standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software”
in the PolySpace Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

6-4

Running Verifications on PolySpace® Server

* A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

* A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For the following verification, the identification number is 1.

Send to PolySpace Server v ¥ Start |

| Compile: 0%

00:00:00

| Intermediate : 0% | Leveld : 0% | Levell: 0% | L
00:00:00 00:00:00 000000

Search: ﬁ I Iﬂ

Status Description
@ Full Log 1 |PolySpace Launcher for C verification start at Jan 5, 2010 17:31:33
I [The generated default DRS %ML file "drs-template. xml” can be found in <result_dir =...
I |analysis ID has been queued with ID : 16

Running Verification Unit-by-Unit

When launching a server verification, you can create a separate verification
jobs for each source file in the project. Each file is compiled, sent to the
PolySpace Server, and verified individually. Verification results can then be
viewed for the entire project, or for individual units.

To run a unit-by-unit verification:

1 In the Launcher, ensure that the Send to PolySpace Server check box
is selected.

send to PolySpace Server [v ¥ Start |

2 In the Analysis options, expand PolySpace inner settings.

3 Select the Run a verification unit by unit check box.

6 Running a Verification

6-6

El-PolySpace inner settings

E--Run a verification unit by unit W

-unit-by-unit

e-Uniit by unit comrmon source C:\PolySpacepaoly ...

-unit-by-unit-common-source

4 Expand the Run a verification unit by unit item.

5 Click the button I_I to the right of the Unit by unit common source

option.

The Unit by unit common source dialog box opens.

~Unit by unit common source [-unit-by-unit-common-source]

C:\PolySpace\polyspace_projectiindudestindude.h

C:\PolySpace\palyspace_projectiindudesimath.h

Ok

Cancel

6 Click the folder icon E‘

The Select a file to include dialog box appears.

7 Select the common files to include with each unit verification.

These files are compiled once, and then linked to each unit before

verification. Functions not included in this list are stubbed.

8 Click Ok.

9 Click Start.

Running Verifications on PolySpace® Server

Each file in the project is compiled, sent to the PolySpace Server, and

verified individually as part of a verification group for the project.

Managing Verification Jobs Using the PolySpace

Queue Manager

You manage all server verifications using the PolySpace Queue Manager (also
called the PolySpace Spooler). The PolySpace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual

verifications, and download results.
To manage verification jobs on the PolySpace Server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens

_iBix)
Operations Help
ID ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp Ci\PolySpace \PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP
----- 4 |PolySpace [Demo_C Ci'\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 |C
----- & |username |[Example_Project [C:\PolySpace\polyspace_projectresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

2 Right-click any job in the queue to open the context menu for that

verification.

6-7

6 Running a Verification

Follow Progress...

View Log File. ..

Download Results...

Download Results And Remove From Queue. ..

Mowve Down In Queue

Stop...
Stop And Download Results. .,
Stop And Remove From Queue,.,

Hemove From Queue...

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon E in the PolySpace Launcher toolbar.

Monitoring Progress of Server Verification

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-8

Running Verifications on PolySpace® Server

ﬂ PolySpace Queue Manager Interface - |EI|5|
Operations Help

ID ¢ | Author Application Results folder CPU Status Date Language

----- 1 |Polyspace [Demo_Cpp Ci\PolySpace \PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP

----- 4 |PolySpace [Demo_C C:'\PolySpace\PolySpaceForCandCPP_R... frunstroms |completed |14-Dec-2009, 15:25:08 |C

----- 5 |polyspace [Demo_C_Singl... |C:\PaolySpace\PolySpaceForCandCPP_R... |runstroms |running 14-Dec-2009, 15:33:38 [C

----- & |usermame |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C
Connected to Queue Manager localhost User mode

2 Right-click the job you want to monitor, and select Follow Progress from
the context menu.

Note This option does not apply to unit-by-unit verification groups, only
the individual jobs within a group.

A Launcher window labeled PolySpace follow remote analysis
progress for C appears.

6 Running a Verification

PolySpace follow remote code verification progress for C - | Ellil

File Edit Help
Send to PolySpace Server [}/ Start | g Stop Execution |
Interme LevelD: 100% Levell: 100% Level2: 100% Level3: 100% Level4: 100% Total
00:00:02 00:00:15 00:00:29 00:00:09 00:00:08 00:00:00 00:01:09
@ Compile Search: ﬁ I— ﬁ
ESEE Oranges classification: ;I

@Fullmg * Wolatile variable all values ulé.tmpulé declared at file single file analysi=s.c line 2
— |¥ Volatile wvariable all wvalues =232.tmp=s32 declared at file =zingle file analysi=s.c line 2
* Wolatile variable all_values_slé.tmpslé declared at file single_file analysis.c line 2

GUI file=s generation complete.
Generating results in a spreadsheet format in C:\PolySpace\PolySpace_RLDatas\analysis?\Pc

Generation complete

Inscrumenting PolySpace resultcs

Done

R R R R R R R R W R R W R R R R R VRO R R R R R R R R R R R R o o R R o R R R o R R R R R R R R R R R o o

A A 4 —I

#%% Snftware Safety Analysis Lewvel 4 done -

Kl | r'
Verification completed

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the
verification. The information appears in the log display area at the bottom
of the window. The full log displays by default. It display messages, errors,
and statistics for all phases of the verification. You can search the full log
by entering a search term in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

6-10

Running Verifications on PolySpace® Server

3 Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward. Click on any message in the log to get details
about the message.

4 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

5
5 Click the refresh button LI to update the stats log display as the
verification progresses.

6 Select File > Quit to close the progress window.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

i
Operations Help
ID ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-5ep-2009, 16:32:23 |CPP
----- 4 |PolySpace Demo_C C:\PolySpace\PolySpaceForCandCPP_R... |runstroms |completed [14-Dec-2009, 15:29:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 |C
----- & |username |[Example_Project [C:\PolySpace\polyspace_projectresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

Viewing Verification Log File on Server

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

6-11

6 Running a Verification

6-12

The PolySpace Queue Manager Interface opens.

_ioix
COperations Help
I ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp Ci\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP
----- 4 |PolySpace [Demo_C C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 [C
----- & |username |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.

Running Verifications on PolySpace® Server

PolySpace’PolySpace_Common'Remotel auncher' wbin' ps

GUI files generation complete.

Generating remote file
Done

Certain {red? errors have been detected in the analysed code dug
SE .

Analysis continuing because the option —continue—with—-red—-error

SoE-E oo —aE o -Jef -eF - Jof e —aE-Jof-Jef—eF-JuF-Jof e -3aF-Jof-3uf—ef-JuE-Juf e -3af-Juf-Juf e -eF-Juf-Jefef-of-Jef e —eFaf—Jef e -eFJf-Jef e -SaE-Tof-Je e -Juf-Jof e Sef-Juf-Juf-Sef-JeE-Juf-ef-
CaTakal

#3#% Level 4 Software Safety Analysis done

CaTakal

SoE-E oo —aE o -Jef -eF - Jof e —aE-Jof-Jef—eF-JuF-Jof e -3aF-Jof-3uf—ef-JuE-Juf e -3af-Juf-Juf e -eF-Juf-Jefef-of-Jef e —eFaf—Jef e -eFJf-Jef e -SaE-Tof-Je e -Juf-Jof e Sef-Juf-Juf-Sef-JeE-Juf-ef-
Ending at: Apr 11, 26088 12:29:8

Uzer time for pass4: 3I5_8real. 35.8u + s

Uzer time for polyspace—c: 176.5real. 176.5u + A=

EaXaZad
#%% End of PolySpace Uerifier analysis
EaXaZad
Presz enter to cloze the window ...

3 Press Enter to close the window.

Stopping Server Verification Before It Completes

You can stop a verification running on the server before it completes using
the PolySpace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over
from the beginning.

To stop a server verification:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-13

6 Running a Verification

i PolySpace Queue Manager Interface _ Inlﬂ

Operations Help

ID ¢ | Author Application Results folder CPU Status Date Language

----- 1 |Polyspace [Demo_Cpp Ci\PolySpace \PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP

----- 4 |PolySpace [Demo_C C:'\PolySpace\PolySpaceForCandCPP_R... frunstroms |completed |14-Dec-2009, 15:25:08 |C

----- 5 |polyspace [Demo_C_Singl... |C:\PaolySpace\PolySpaceForCandCPP_R... |runstroms |running 14-Dec-2009, 15:33:38 [C

----- & |usermame |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C
Connected to Queue Manager localhost User mode

2 Right-click the job you want to monitor, and select one of the following
options:

Right-click the job you want to monitor, and select one of the following
options:

® Stop — Stops a unit-by-unit verification job without removing it. The
status of the job changes from “running” to “aborted”. All jobs in the
unit-by-unit verification group remain in the queue, and other jobs in
the group will continue to run.

* Stop and download results — Stops the verification job immediately
and downloads any preliminary results. The status of the verification
changes from “running” to “aborted”. The verification remains in the
queue.

* Stop and remove from queue — Stops the verification immediately
and removes it from the queue. If the job is part of a unit-by-unit
verification group, the entire verification is removed, not just the
individual job.

Removing Verification Jobs from Server Before They
Run

If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the PolySpace Queue Manager.

6-14

Running Verifications on PolySpace® Server

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 6-13). Once you have aborted a verification, you can remove it from

the queue.

To remove a job from the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

_ioix
COperationzs Help
I ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp Ci\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP
----- 4 |PolySpace [Demo_C C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 [C
----- & |username |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

2 Right-click the job you want to remove, and select Remove from queue.

The job is removed from the queue.

Changing Order of Verification Jobs in Server Queue

You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

1 Double-click the PolySpace Spooler icon:

6-15

6 Running a Verification

Spoole

The PolySpace Queue Manager Interface opens.

ﬂ PolySpace Queue Manager Interface - |EI|£|

COperationzs Help

I ¢ | Author Application Results folder CPU Status Date Language

----- 1 |Polyspace [Demo_Cpp Ci\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP

----- 4 |PolySpace [Demo_C C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C

----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 [C

----- & |username |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C
Connected to Queue Manager localhost User mode

2 Right-click the job you want to remove, and select Move down in queue.
The job is moved down in the queue.

3 Repeat this process to reorder the jobs as necessary.

Note You can move unit-by-unit verification groups in the queue, as well as
individual jobs within a single unit-by-unit verification group. However, you
can not move individual unit-by-unit verification jobs outside of the group.

Purging Server Queue

You can purge the server queue of all jobs, or completed and aborted jobs
using the using the PolySpace Queue Manager.

Note You must have the queue manager password to purge the server queue.

To purge the server queue:

6-16

Running Verifications on PolySpace® Server

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

ﬂ PolySpace Queue Manager Interface - |EI|£|
COperationzs Help

I ¢ | Author Application Results folder CPU Status Date Language

----- 1 |Polyspace [Demo_Cpp Ci\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP

----- 4 |PolySpace [Demo_C C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C

----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 [C

----- & |username |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C
Connected to Queue Manager localhost User mode

2 Select Operations > Purge queue. The Purge queue dialog box opens.

x

ETExETEEECEEEEE

Administrator password: I

Action: IF'urgE completed and failed verifications ;I

Furge completed and failed verifications k
Purge the entire queue

AT I T T

3 Select one of the following options:

®* Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

®* Purge the entire queue — Removes all jobs from the server queue.

6-17

6 Running a Verification

6-18

Note For unit-by-unit verification jobs, no jobs are removed until the
entire group has been verified.

4 Enter the Queue Manager Password.
5 Click OK.
The server queue is purged.

Changing Queue Manager Password

The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is administrator.

To set the Queue Manager password:

1 Double-click the PolySpace Spooler icon:
The PolySpace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.
The Change Administrator Password dialog box opens.

3 Enter your old and new passwords, then click OK.

The password is changed.

Sharing Server Verifications Between Users

Security of Jobs in Server Queue

For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

Running Verifications on PolySpace® Server

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate
that the job belongs to you.

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

analysis-keys.txt File

The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

e UNIX® — /home/<username>/.PolySpace

e Windows® — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>
where <public key>is a value in the range [0..F]
The fields in the file are tab-separated.
The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCES576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts

To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys. txt file containing the <ID> for the
job you want to share.

6-19

6 Running a Verification

2 Add this line to the analysis-keys.txt file of the person who wants
to share the file.

The second user can then download or manage the verification.

Magic Key to Share Verifications

A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted

If your analysis-keys. txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the PolySpace Spooler icon:

6-20

Running Verifications on PolySpace® Server

The PolySpace Queue Manager Interface opens.

_ioix
COperationzs Help
I ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp Ci\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP
----- 4 |PolySpace [Demo_C C:\PolySpace\PolySpaceForCandCPP_R... jrunstroms |completed |14-Dec-2009, 15:29:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PolySpace\PolySpaceForCandCPP_R... |runstroms [running 14-Dec-2009, 15:33:38 [C
----- & |username |[Example_Project [C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

2 Select Operations > Enter Administrator Mode.

3 Enter the Queue Manager Password.

4 Click OK.

You can now manage all verification jobs in the server queue, including
downloading results.

6-21

6 Running a Verification

Running Verifications on PolySpace Client

In this section...

“Starting Verification on Client” on page 6-22

“What Happens When You Run Verification” on page 6-23
“Monitoring the Progress of the Verification” on page 6-24
“Stopping Client Verification Before It Completes” on page 6-25

Starting Verification on Client

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on C code containing more than 2,000 assignments
and calls, the verification will stop and you will receive an error message.

To start a verification that runs on a client:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Ensure that the Send to PolySpace Server check box is not selected.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

5 Click the Start button.

6-22

Running Verifications on PolySpace® Client

P Start |

6 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

7 When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.

S x|
@ yerification process completed.
Do o wank to launch PolySpace Yiewer
Cancel |

8 Click OK to open your results in the Viewer.

For information on viewing your results, see “Opening Verification Results”
on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software 1s independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

6-23

6 Running a Verification

6-24

“MAIN GENERATOR OPTIONS (-main-generator) for PolySpace Software”
in the PolySpace Products for C Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

Intermediate : 100%: 'u'ell: 255G | Level

00:00:04 00: 00:00:02 00
= Compile Search: 44 I (43
_@ Stats Status Description File Line Col

@ Full Log 1 |PolySpace Launcher for C verifi...

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Launcher window.

To view the logs:

1 The compile log is displayed by default.

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward. Click
on any message in the log to get details about the message.

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

Running Verifications on PolySpace® Client

o
3 Click the refresh button LI to update the stats log display as the
verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

Stopping Client Verification Before It Completes

You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the
verification starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

@ Stop Execution |

A warning dialog box appears.

waming x|

@ Do wou really want to stop the current execution ?

2 Click Yes.

6-25

6 Running a Verification

6-26

The verification stops and the message Verification process stopped

appears.

3 Click OK to close the Message dialog box.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

Running Verifications from Command Line

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 6-27

“Managing Verifications in Batch” on page 6-27

Launching Verifications in Batch
A set of commands allow you to launch a verification in batch.

All these commands begin with the following prefixes:

® Server verification —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-c

e (Client verification —polyspace-remote-desktop-c

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-c -server
[<hostname>:[<port>] | auto] allows you to send a C client
verification remotely.

Note If your PolySpace server is running on Windows, the
batch commands are located in the /wbin/ folder. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-c.exe

Managing Verifications in Batch

In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

6-27

6 Running a Verification

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

® psqueue-download <id> <results dir> — download an identified
verification into a results folder. When downloading a unit-by-unit
verification group, all the unit results are downloaded and a summary of
the download status for each unit is displayed.

= [-f] force download (without interactivity)

= -admin -p <password> allows administrator to download results.
= [-server <name>[:port]] selects a specific Queue Manager.

= [-v]|version] gives release number.

® psqueue-kill <id> — kill an identified verification. For unit-by-unit
verification groups, you can stop the entire group, or individual jobs within
the group. Stopping an individual job does not kill the entire group.

® psqueue-purge all|ended — remove all completed verifications from
the queue. For unit-by-unit verification jobs, no jobs are removed until
the entire group has been verified.

® psqueue-dump — gives the list of all verifications in the queue associated
with the default Queue Manager. Unit-by-unit verification groups are
shown using a tree structure.

® psqueue-move-down <id>— move down an identified verification in the
Queue. Individual jobs can be moved within a unit-by-unit verification
group, but not outside of the group.

® psqueue-remove <id> — remove an identified verification in the queue.
You cannot remove a single job that is part of a unit-by-unit verification
group, you can only remove the entire group.

® psqueue-get-gm-server — give the name of the default Queue Manager.

® psqueue-progress <id>: give progression of the currently identified
and running verification. This command does not apply to unit-by-unit
verification groups, only the individual jobs within a group.

= [-open-launcher] display the log in the graphical user interface of
launcher.

= [-full] give full log file.

6-28

Running Verifications from Command Line

= psqueue-set-password <password> <new password> — change
administrator password.

® psqueue-check-config — check the configuration of Queue Manager.
= [-check-licenses] check for licenses only.

® psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs folder).

= [-list-versions] give the list of available release to upgrade.

= [-install-version <version number> [-install-dir <folder>]]
[-silent] allow to install an upgrade in a given folder and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

6-29

6 Running a Verification

6-30

Troubleshooting
Verification Problems

e “Verification Process Failed Errors” on page 7-2

¢ “Compilation Errors” on page 7-7

e “Link Errors and Warnings” on page 7-16

® “Stubbing Errors” on page 7-22

* “Automatic Stub Creation Errors” on page 7-29

¢ “Reducing Verification Time” on page 7-32

¢ “Obtaining Configuration Information” on page 7-51

* “Removing Preliminary Results Files” on page 7-53

7 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Messages Described in This Section” on page 7-2

“Hardware Does Not Meet Requirements” on page 7-2

“You Did Not Specify the Location of Included Files” on page 7-3
“PolySpace Software Cannot Find the Server” on page 7-4

“Limit on Assignments and Function Calls” on page 7-6

Messages Described in This Section

If you see a message that includes Verification process failed, the
PolySpace software could not perform the verification. The following sections
present some possible reasons for a failed verification.

Message

See

Errors found when verifying
host configuration

“Hardware Does Not Meet
Requirements” on page 7-2

include.h: No such file or
folder (where include.h represents
the included file)

“You Did Not Specify the Location of
Included Files” on page 7-3

Error: Unknown host

“PolySpace Software Cannot Find
the Server” on page 7-4

License error: number-of
assignments and function calls
is too big for -unit mode

“Limit on Assignments and Function
Calls” on page 7-6

Hardware Does Not Meet Requirements

Message
In the verification log:

Errors found when verifying host configuration.

Verification Process Failed Errors

Cause

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

Solution
You can:

e Upgrade your computer to meet the minimal requirements.

® In the General section of the Analysis options, select Continue with
current configuration and run the verification again.

You Did Not Specify the Location of Included Files

Message
In the verification log (where include.h represents the included file):

include.h: No such file or folder

Cause
Either the files are missing or you did not specify the location of included files.

Solution
Do one of the following:

¢ Include the file in the designated location.

® Specify the proper location of include files.

The MathWorks™ recommends that you create a project file to store include
files, as described in “Creating a Project” on page 3-2.

7-3

http://www.mathworks.com/products/polyspaceclientc/requirements.html

7 Troubleshooting Verification Problems

PolySpace Software Cannot Find the Server

Message
Search in the verification log for:

Error: Unknown host :

Cause
PolySpace software uses information in the preferences to locate the server.
In this case, PolySpace software cannot find the server.

Solution
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

Verification Process Failed Errors

x

ToolsMenu Remote Launcher | Miscellaneous | Results folder | Defauilt folder | Editors | Generic targets |
—Remote configuration

[+ set this option to use the server mode by defaultin every new project
Mote: this option is mandatory when the project contains multitasking options.
The multitasking options will be ignored otherwise.

i+ Automatically detect the remote server

i~ Use the following server and port : 12427

The server name Tocalhost™ can be used if the server is the local machine.

QK Apply Cancel

How you deal with this error depends on the selected remote configuration
option.

Remote Configuration Option Solution

Automatically detect the remote | Specify the server by selecting Use
server the following server and port and
providing the server name and port.

Use the following server and Confirm the server name and port
port number are accurate.

For information about setting up a server, see the PolySpace Installation
Guide.

7 Troubleshooting Verification Problems

7-6

Limit on Assignments and Function Calls

Message

EEEE SRR R SR RS S SRS SRR EEE SRR SRS SRR SRR EEEEREEEEEEEEEEEEESEES

Beginning C to intermediate language translation

R EEEEE SRS S SRR EEEE SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEES

C to intermediate language translation 1 (P_SP)

*** | icense error: number of assignments and function calls is
too big for -unit mode (5534 v.s 2000).
*** Stopping.

Cause

PolySpace Client for C/C++ software can only verify C code with up to 2,000
assignments and calls.

Solution
To verify code containing more than 2,000 assignments and calls, launch your
verification on the PolySpace Server for C/C++.

Compilation Errors

Compilation Errors

In this section...

“Overview” on page 7-7

“Configuring a Text Editor” on page 7-8

“Examining the Compile Log” on page 7-8

“Compiler Messages Described in This Section” on page 7-10
“Syntax Error” on page 7-10

“Undeclared Identifier” on page 7-11

“No Such File or Folder” on page 7-12

“H#error directive” on page 7-13

“Errors Resulting from Unsupported Non-ANSI Keywords Such as
@interrupt” on page 7-14

Overview

You can use PolySpace software instead of your chosen compiler to make

syntactical, semantic, and other static checks. The PolySpace compiler follows

the ANSI C90 standard.

PolySpace detects compilation errors during the standard compliance checking

stage, which takes place before the verification stage. The compliance
checking stage takes about the same amount of time to run as a compiler.
Using PolySpace software early in development yields a number of benefits:

Detection of link errors

Detection of errors that only appear with two or more files

Detection of compiler directives that you need to explicitly declare

Objective, automatic, and early control of development work (possibly to
check code into a configuration management system)

7-7

7 Troubleshooting Verification Problems

Configuring a Text Editor

Configure a text editor before you can open source files, as described in
“Configuring Text and XML Editors” on page 3-16.

Examining the Compile Log

The compile log displays compile phase messages and errors. To search the
log, enter search terms in the Search in the log box. Click the left arrows to
search backward or click the right arrows to search forward.

To examine errors in the compile log:

1 Click the Compile button in the log area of the Launcher window.

A list of compile phase messages appears in the log part of the window.

Ef Comple | search: 44 | bh
_E Stats Status Description File Line Col
@ Full Log 1 [PolySpace Launcher for C verification start at Oct 20, ...

— 1 identifier *_bit_t" is undefined myint.c 10

1 union *_tag_"has no field "Alvues® myint.c 19

identifier *_hit_t"is undefined myint.c 20
% |Failed compilation of myint.c
i Verifier has detected compilation error(s) in the code.
i Exiting because of previous errar

2 Select any of the messages to view details and the full path of the file
containing the error.

Compilation Errors

Search: 44 | (23
Status Description File Line
i PaolySpace Launcher for C verification start at Oct 20,...
i identifier *_bit_t" is undefined myint.c 10
i union *_tag_" has no field “Allvues™
identifier *_bit_t" is undefined myint.c 20
b Failed compilation of myint.c

i Verifier has detected compilation error(s) in the code.
i Exiting because of previous error

Detail

File C:\polyspace projectéh\sources‘myint.c line 135

Error:
union "_tag " has no field "4llvues"™

3 To open the source file referenced by any message, right-click the row for
the message and select Open Source File.

Search: 44 | (12
Status Description File
i PolySpace Launcher for C verification start at Oct 20,...
i identifier *_hit_t"is undefined myint.c 10

union *_tag_"has no field “Alues™

identifier *_bit_t"is undefined Open Source File

? Failed compilation of myint.c %= Open Preprocessed File
1 Verifier has detected compilation error(s) in the code s Configure Editor
1 Exiting because of previous errar |

The file opens in your text editor.
4 In the editor, locate the line of code where the compilation error occurs.

5 If you do not understand the error information in the Detail pane,
right-click the row for the message and select Open Preprocessed File.

7-9

7 Troubleshooting Verification Problems

7-10

This action opens the .ci file that the PolySpace software uses to compile
the source file. The contents of this file helps you understand the

compilation error.

6 Correct the error and run the verification again.

Compiler Messages Described in This Section
This section describes compiler messages that include the following phrases:

Phrase Found in Message

See

syntax error

“Syntax Error” on page 7-10

undeclared identifier

“Undeclared Identifier” on page 7-11

No such file or folder
or

Catastrophic error: could not
open source file

“No Such File or Folder” on page 7-12

#error: directive

“H#error directive” on page 7-13

This section also describes error messages triggered by unsupported
keywords. See “Errors Resulting from Unsupported Non-ANSI Keywords

Such as @interrupt” on page 7-14.

This section includes sample code that triggers the example message.

Syntax Error

Message
Verifying compilation.c

compilation.c:3: syntax error; found “x' expecting ;'

Code Used
void main(void)

{

int far x;

Compilation Errors

X = 0;
X++;

Solution

The far keyword is unknown in ANSI C. This causes confusion at compilation
time. Should far be a variable or a qualifier? The int far x; construction
is illegal.

Possible corrections include:
e Remove far from the source code.

¢ Define far as a qualifier, such as const or volatile.

¢ Remove far artificially by specifying a compilation flag such as -D far=
(with a space after the equal sign).

Note To specify -D compilation flags that are generic to the project, for
efficiency, use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-28.

Undeclared Identifier

Message
Verifying compilation.c
compilation.c:3: undeclared identifier “x'

Code Used
void main(void)

{
X = 0;
X++;

}

7-11

7 Troubleshooting Verification Problems

7-12

Solution

The type is unknown, and therefore the compilation stops. Should x be a
float, an int, or a char?

Some cross compilers define variables implicitly. Your code must declare
variables verification. PolySpace software has no knowledge about implicit
variables.

Similarly, some compilers interpret _ SP as a reference to the stack pointer.
Use the -D compilation flag.

Note To specify -D compilation flags that are generic to the project, for
efficiency, use the -include option. Refer to “How to Gather Compilation
Options Efficiently” on page 4-28.

No Such File or Folder

Messages

Here are examples of messages that include No such file or folder and
catastrophic error: could not open source file:

compilation.c:1: one_file.h: No such file or folder

compilation.c:1: catastrophic error: could not open source file
"one_file.h" (where one_file.h is an include file)

Code Used

#include "one_file.h"

Solution
The one_file.h file is missing.

These files are essential for PolySpace software to complete the compilation,
for

Compilation Errors

® Data coherency

® Automatic stubbing

The PolySpace software must be able to find the include folder that contains
this file. In the launcher, use the -I option in the launcher, as described
in the “-I directory” reference page.

#error directive

The PolySpace software can terminate during compilation with an
unsupported platform #error. This error means that the software does not
recognize the header data types due to missing compilation flags.

Message
#error directive: !Unsupported platform; stopping!

Code Used

#if defined(__ BORLANDC__) || defined(__VISUALC32_)
define MYINT int // then use the int type

#elif defined(__GNUC__) // GCC doesn't support myint
define MYINT long // but uses 'long' instead
#else

error !Unsupported platform; stopping!

#endif

Solution

In the PolySpace software, all compilation directives must be explicit. In this
example, the compilation stops because you did not specify the BORLANDC
or the VISUALC32_ ,orthe GNUC__ compilation flags. To fix this error, in
the Target/Compilation section, under Analysis options, for the Defined
Preprocessor Macros option, specify one of those three compilation flags
and restart the verification.

7-13

7 Troubleshooting Verification Problems

Errors Resulting from Unsupported Non-ANSI
Keywords Such as @interrupt

Code that includes a non-ANSI keyword that PolySpace software does not
support generates a compilation error. For example, keywords containing @
as a first character cause a compilation error. But in this case, you cannot
address the problem by using a compilation flag, nor with a file associated
with the -include option.

To address this problem, use the -post-preprocessing-command option.

When you use the -post-preprocessing-command option, write a script or
command to replace the unsupported, non-ANSI keyword with a supported
keyword. The command must process the standard output from preprocessing
and produce its results in accordance with standard output.

The specified script file or command runs just after the preprocessing phase
on each source file. The script executes on each preprocessed c file.

Note Preprocessed files have the extension .ci. All preprocessed files are
contained in a single compressed file named ci.zip. This file is in the
results folder in one of the following locations:

® <results>/ALL/SRC/MACROS/ci.zip
® <results>/C-ALL/ci.zip

Caution Always preserve the number of lines in a preprocessed .ci file.
Adding or removing a line, can result in unpredictable behavior, including
changes to the location of checks and MACROS in the PolySpace viewer.

Here 1s an example of such a script file. Save the script in a file named
myscript.pl.

#!/usr/bin/perl
bin STDOUT;

7-14

Compilation Errors

Process every line from STDIN until EOF
while ($line = <STDIN>)

{

Replace keyword titi with toto

$line =~ s/titi/toto/g;

Remove @interrupt (replace with nothing)
$line =~ s/@interrupt/ /g;

DONT DELTE: Print the current processed line to STDOUT
print $line;

}

To run the script on each preprocessed c file, use this command:

-post-preprocessing-command %POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute path to myscript.pl>\myscript.pl

Note Because PolySpace software no longer includes Cygwin, all files must
be executable by Windows. To support scripting, the PolySpace installation
includes Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

7-15

7 Troubleshooting Verification Problems

7-16

Link Errors and Warnings

In this section...

“Overview” on page 7-16

“Function: Wrong Argument Type” on page 7-17
“Function: Wrong Argument Number” on page 7-17
“Variable: Wrong Type” on page 7-18

“Variable: Signed/Unsigned” on page 7-18
“Variable: Different Qualifier” on page 7-19
“Variable: Array Against Variable” on page 7-19
“Variable: Wrong Array Size” on page 7-20

“Missing Required Prototype for varargs” on page 7-20

Overview
This section describes how to address some common types of link errors.

Link errors result from the checking that PolySpace performs for compliance
with ANSI C standards. Link error messages can apply to functions,
variables, and varargs.

The error message includes specific information that reflects the code that
the PolySpace software is checking, such as the function name and type
declaration.

Examining Preprocessed Code
Looking at the preprocessed code can help you to find link errors faster.

Preprocessed files have the extension .ci. All preprocessed files are contained
in a single compressed file named ci.zip. This file is in the results folder in
one of the following locations:

® <results>/ALL/SRC/MACROS/ci.zip
® <results>/C-ALL/ci.zip

Link Errors and Warnings

Function: Wrong Argument Type

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'f' function has incompatible type with its definition
declared function type has 'arg 1' type incompatible with definition

int f(float vy) int f(int *y);
{
int r; void main(void)
r=12; {
} int r;
r = f(&r);
}
Solution

The first parameter for the f function is either a float or a pointer to an
integer. The global declaration must match the definition.

Function: Wrong Argument Number

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'f' function has incompatible type with its definition
declared function type has incompatible args. number with definition

int f(float vy) int f(int *y);
{
int r; void main(void)
r=12; {
} int r;

r = f(&r);

}

7-17

7 Troubleshootin

g Verification Problems

7-18

Solution

These two functions have a different number of arguments. This mismatch in
the number of arguments results in a nondeterministic execution.

Variable: Wrong Type

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x int x;
void main(void)

{}

Solution

Declare the x variable the same way in every file. If a variable x is as an
integer equal to 1, which is 0x0001, what does this value mean when seen as a
float? It could result in a NaN (Not a Number) during execution.

Variable: Signed/Unsigned

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'unsigned' type incompatible with defined 'signed' type

extern unsigned char x; char x;
void main(void)

{}

Solution

Consider the 8-bit binary value 10000010. Given that a char is 8 bits, it is not
clear whether it is 130 (unsigned), or maybe -126 (signed).

Link Errors and Warnings

Variable: Different Qualifier

PolySpace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition
declared 'non qualified' type incompatible with defined 'volatile' type
'volatile' qualifier used

extern int x; volatile int x;

void main(void)

{}

Solution

PolySpace software flags the volatile qualifier, because that qualifier has
major implications for the verification. Because it is not clear which statement
1s correct, the verification process generates a warning.

Variable: Array Against Variable

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

void main(void)

{

Solution

The real allocated size for the x variable is one integer. Any function
attempting to manipulate x[] corrupts memory.

7-19

7 Troubleshooting Verification Problems

7-20

Variable: Wrong Array Size

PolySpace Output
Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition
declared array type has 'upper bound' 5 inferior to definition 'upper bound' 12

extern int x[12]; int x[5];

void main(void)

{

Solution

The real allocated size for the x variable is five integers. Any function
attempting to manipulate x[] between x[5] and x[11] corrupts memory.

Missing Required Prototype for varargs

PolySpace Output

Verifying cross-files ANSI C compliance ...
Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...); void main(void)
{
void f(void) g(4);
{ }
g(12, abcde ,40)
}
Solution

Declare the prototype for g when main executes.

Link Errors and Warnings

To eliminate this error, you can add the following line to main:

void g(int, ...)

Or, you can avoid modifying main by adding that same line in a new file and
then when you launch the verification, use the option

include c:\PolySpace\new_file.h

where new_file.h is the new file that includes the line void g(int, ...).

7-21

7 Troubleshooting Verification Problems

7-22

Stubbing Errors

In this section...

“Conflicts Between Standard Library Functions and PolySpace Stubs” on
page 7-22

“_polyspace_stdstubs.c Compilation Errors” on page 7-22

“General Troubleshooting Approaches” on page 7-24

“Restart with the -1 option” on page 7-24

“Include Files with Stubs to Replace Automatic Stubbing” on page 7-25
“Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26

“Provide a .c file Containing a Prototype Function” on page 7-27

“Ignore _polyspace_stdstubs.c” on page 7-28

Conflicts Between Standard Library Functions and
PolySpace Stubs

A code set can compile successfully for a target, but during the
__polyspace_stdstubs.c compilation phase for that same code, PolySpace
software can generate an error message.

The error message highlights conflicts between:

e A standard library function that the application includes

® One of the standard stubs that PolySpace software uses in place of that
function

For more information about errors generated during automatic stub creation,
see “Automatic Stub Creation Errors” on page 7-29.

_polyspace_stdstubs.c Compilation Errors

Here are examples of the errors relating to stubbing standard library
functions. The code uses standard library functions such as sprintf and
strcpy, illustrating possible problems with these functions.

Stubbing Errors

Example 1

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file or
folder

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace_ stdstubs.c:1118: syntax error; found
“strlen' expecting '’

C-STUBS/__polyspace_stdstubs.c:1120: syntax error; found "i'
expecting ;'

C-STUBS/__polyspace_stdstubs.c:1120: wundeclared identifier "i'
Example 2
Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure
‘sprintf'.

Example 3
Verifying C-STUBS/__polyspace__stdstubs.c
C-STUBS/__polyspace__ stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace_stdstubs.c:3027: syntax error; found 'n'
expecting ")

C-STUBS/__polyspace__stdstubs.c:3027: skipping 'n'

C-STUBS/__polyspace_ stdstubs.c:3037: wundeclared identifier 'n'

7-23

7 Troubleshooting Verification Problems

General Troubleshooting Approaches

You can use a range of techniques to address these error messages. These
techniques reflect different balances for the verification between:

Precision
Amount of time preparing the code

Execution time

Try any of the techniques in any order. Consider trying the simplest
approaches first, and trying other techniques as necessary to achieve the
balance of the trade-offs that you seek. Here are the techniques, listed in
order of estimated simplicity, from simplest to most thorough:

“Restart with the -1 option” on page 7-24
“Include Files with Stubs to Replace Automatic Stubbing” on page 7-25
“Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26

= Use when precision is important enough to justify extensive code
preparation time

“Provide a .c file Containing a Prototype Function” on page 7-27
= Use when you do not want to invest much time for code preparation time

“Ignore _polyspace_stdstubs.c” on page 7-28

If the problem persists after trying all these solutions, contact MathWorks™
support.

Restart with the -1 option

Generally you can best address stubbing errors by restarting the verification.
Include the header file containing the prototype and the required definitions,
as used during compilation for the target.

The least invasive way of including the header file containing the prototype is
to use the -I option.

7-24

Stubbing Errors

Include Files with Stubs to Replace Automatic
Stubbing

The PolySpace software provides a selection of files that contain stubs
for most standard library functions. You can use those stubs in place of
automatic stubbing.

For replacement of stubbing to work effectively, provide the correct include
file for the function. In the following example, the standard library function
is strlen. This example assumes that you have included string.h. Because
the string.h file can differ between targets, there are no default include
folders for PolySpace stub files.

If the compiler has implicit include files, manually specify those include files,
as shown in this example.

(_polyspace_stdstubs.c located in <<results_dir>>/C-ALL/C-STUBS)

_polyspace_stdstubs.c
#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size t strlen(const char *s)
{
size t i=0;
while (s[i] != 0)
i++;

return ij;

}
#endif /* _polyspace_strlen */

If problems persist, try one of these solutions:

® “Create a _polyspace_stdstubs.c File with Necessary Includes” on page 7-26
e “Provide a .c file Containing a Prototype Function” on page 7-27

® “Ignore _polyspace_stdstubs.c” on page 7-28

7-25

7 Troubleshooting Verification Problems

Create a _polyspace_stdstubs.c File with Necessary
Includes

1 Copy <<results _dir>>/C-ALL/C-STUBS/ _polyspace_stdstubs.c tothe
sources folder and rename it polyspace_stubs.c.

This file contains the whole list of stubbed functions, user functions, and
standard library functions. For example:

#define _polyspace_strlen
#define a_user_function

2 Find the problem function in the file. For example:

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size_t strlen(const char *s)
{
size_t 1i=0;
while (s[i] != 0)
it++;

return i;

}
#endif /* _ _polyspace_strlen */

The verification requires you to include the string.h file that the
application uses.

3 Do one of the following (The MathWorks recommends the first approach):

® Provide the string.h file that contains the real prototype and type
definitions for the stubbed function.

e Extract the relevant part of that file for inclusion in the verification.

For example, for strilen:
string.h
// put it in the /homemade_include folder

typedef int size_t;
size_t strlen(const char *s);

7-26

Stubbing Errors

4 Specify the path for the include files and relaunch PolySpace, using one
of these commands:

polyspace-c -I /homemade_include
or

polyspace-c -I /our_target_include_path

Provide a .c file Containing a Prototype Function

1 Identify the function causing the problem (for example, sprintf).

2 If you cannot find a prototype for this function, provide a .c file containing
the prototype for this function.

3 Restart the verification either with the PolySpace Launcher or from the
command line.

You can find other __polyspace _no_function_name options in
_polyspace__stdstubs.c files, such as:

__polyspace_no_vprintf
__polyspace_no_vsprintf
__polyspace_no_fprintf
__polyspace_no_fscanf
__polyspace_no_printf
__polyspace_no_scanf
__polyspace_no_sprintf
__polyspace_no_sscanf
__polyspace_no_fgetc
__polyspace_no_fgets
__polyspace_no_fputc
__polyspace_no_fputs
__polyspace_no_getc

Note If you are considering defining multiple project generic -D options,
using the -include option can provide a more efficient solution to this type of
error. Refer to “How to Gather Compilation Options Efficiently” on page 4-28.

7-27

7 Troubleshooting Verification Problems

7-28

Ignore _polyspace_stdstubs.c

When all other troubleshooting approaches have failed, you can try ignoring
_polyspace_stdstubs.c. Toignore polyspace_stdstubs.c, but still see
which standard library functions are in use:

1 Do one of the following:

Deactivate all standard stubs using -D POLYSPACE_NO_STANDARD_STUBS
option. For example:

polyspace-c -D POLYSPACE_NO_STANDARD_STUBS

Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_ STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_STRICT ANSI_STANDARD_STUBS

This approach presents a list of functions PolySpace software tries to stub.
It also lists the standard functions in use (most probably without any
prototype), and generates the following type of message:

* Function strcpy may write to its arguments and may
return parts of them. Does not model pointer effects.
Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype

2 Add a proper include file in the C file that uses your standard library
function. If you restart PolySpace with the same options, the default
behavior results for these stubs for this particular function.

Consider the example size t strcpy(char *s, const char *i) stubbed to

®* Write anything in *s

® Return any possible size t

Automatic Stub Creation Errors

Automatic Stub Creation Errors

In this section...

“Three Types of Error Messages” on page 7-29
“Function Pointer Error” on page 7-29
“Unknown Prototype Error” on page 7-31

“Parameter -entry-points Error” on page 7-31

Three Types of Error Messages

The PolySpace software generates three different types of error messages
during the automatic creation of stubs.

For more information about stubbing errors, see “Stubbing Errors” on page
7-22.

Function Pointer Error

Message

Fatal error: function 'f' refers to a function pointer either
much too complex or in a too-complex data-structure, or with
unknown parameters.

It cannot be stubbed automatically.

Solutions
Consider a prototype f that contains a function pointer as a parameter.

If the function pointer prototype only contains scalars and/or floats, the
PolySpace software automatically stubs f.

For example, the verification process automatically stubs the following
function:

int f()
void (*ptr_ok)(int, char, float),

7-29

7 Troubleshooting Verification Problems

7-30

other_typel other_parami);

If this function pointer prototype also contains pointers, you get the error
message and have to stub the f function manually.

For example, stub the following function manually (unless you use the
-permissive-stubber option):

int f()
void (*ptr_ok)(int *, char, float),
other_typel other_paramil);

If you use the -permissive-stubber option on the following function f (), you
still see the function pointer error. The PolySpace software does not recognize
if the f () calls the function pointer ptr.

typedef void (*ptr_func_T) (int, int*, float);
extern ptr_func_T* extern_function_ptr(void);
extern int f(ptr_func_T, int other_paramil);

void function_link_stubber(void)

{
ptr_func_T* ptr = extern_function_ptr();
f(ptr,10);
extern_function_ptr();

}

In this case, to resolve the error, you can provide a manual stub of f () that
does not call the function pointer ptr. Add this stub to the verification. The
code for this solution is:

typedef void (*ptr_func_T) (int, int*, float);
extern ptr_func_T* extern_function_ptr(void);
extern int pst_random(void);
int f(ptr_func_T ptrf, int other_paramil)
{

return pst_random();

}

Automatic Stub Creation Errors

Unknown Prototype Error

Message

Fatal error: function 'f' has unknown prototype

Error message explanation:
"function has wrong prototype" means that either the function
has no prototype or its prototype is not ANSI compliant.
"task is undefined" means that a function has been declared
to be a task but has no known body

Solution
Provide an ANSI-compliant prototype.

Parameter -entry-points Error

Message

**x \erifier found an error in parameter -entry-points: task "w"
must be a userdef function

--- Found some errors in launching command. ---
--- Please consult rte-kernel -h to correct them ---
--- and launch the verification again. ---

Solution

A function or procedure declared to be an -entry-point cannot be an
automatically stubbed function.

7-31

7 Troubleshooting Verification Problems

7-32

Reducing Verification Time

In this section...

“Factors Impacting Verification Time” on page 7-32

“Displaying Verification Status Information” on page 7-33
“Techniques for Improving Verification Performance” on page 7-34
“Turning Antivirus Software Off” on page 7-36

“Tuning PolySpace Parameters” on page 7-36

“Subdividing Code” on page 7-37

“Reducing Procedure Complexity” on page 7-47

“Reducing Task Complexity” on page 7-49

“Reducing Variable Complexity” on page 7-50

“Choosing Lower Precision” on page 7-50

Factors Impacting Verification Time

These factors affect how long it takes to run a verification:

® The size of the code
¢ The number of global variables

¢ The nesting depth of the variables (the more nested they are, the longer
it takes)

® The depth of the call tree of the application
¢ The intrinsic complexity of the code, particularly with regards to pointer

manipulation

Because many factors impact verification time, there is no precise formula
for calculating verification duration. Instead, PolySpace software provides
graphical and textual output to indicate how the verification is progressing.

Reducing Verification Time

Displaying Verification Status Information

For server verifications, use the PolySpace Queue Manager to follow the
progress of your verification. For more information, see “Monitoring Progress
of Server Verification” on page 6-8.

For client verifications, monitor the progress of your verification using the
progress bar and Stats log in the Launcher. For more information, see
“Monitoring the Progress of the Verification” on page 6-24.

PolySpace follow remote code verification progress for C - | Ellil
File Edit Help
Send to PolySpace Server v P/ Start | 6 Stop Exeaution |

Intermediate: 1 wvel0: f y vel3: Total

00:00:02 00:00:15 00:00:08 00:01:09
@ Compile Search: ﬁ I ﬁ
ﬁsmts Cranges classification: ﬂ

@FullLog * Wolatile variable all values ulé.tmpulé declared at file single file analysi=s.c line 2
— |¥ Volatile wvariable all values =32.tmps32 declared at file single file analysis.c line 2
* Wolatile variable all values sl6.tmpz2l6 declared at file single file analysi=z.c line 2

GUI files generation complete.
Generating results in a spreadsheet format in C:%\Poly3pace\PolySpace RLDatas‘analysisT\Pc

Generation complete

Instrumenting PolySpace results

Done

R R R R R AR R AR AR AR R AR AR R R AR R AR R AR AR R AR R AR AR AR R R R R R R

A A 4 _I

#%% Software Safety Analysis Level 4 done hd

4 | r'
Verification completed

The progress bar highlights each completed phase and displays the amount
of time for that phase. You can estimate the remaining verification time by

7-33

7 Troubleshooting Verification Problems

extrapolating from this data, and considering the number of files and passes
remaining.

Techniques for Improving Verification Performance

This section suggests methods to reduce the duration of a particular
verification, with minimal compromise for the launch parameters or the
precision of the results.

You can increase the size of a code sample for effective analysis by tuning the
tool for that sample. Beyond that point, subdividing the code or choosing a
lower precision level offers better results (-01, -00).

You can use several techniques to reduce the amount of time required for a
verification, including

® “Turning Antivirus Software Off” on page 7-36

¢ “Tuning PolySpace Parameters” on page 7-36

e “Subdividing Code” on page 7-37

¢ “Reducing Procedure Complexity” on page 7-47

e “Reducing Task Complexity” on page 7-49

e “Reducing Variable Complexity” on page 7-50

e “Choosing Lower Precision” on page 7-50

You can combine these techniques. See the following performance-tuning
flow charts:

e “Standard Scaling Options Flow Chart” on page 7-35

e “Reducing Code Complexity” on page 7-36

7-34

Reducing Verification Time

Standard Scaling Options Flow Chart

* CPU must be > 1 GHz.
* Memory must be > 1 GB x #processors.
» Swap files must be > 1 GB or
>= min(4 GB, memory size).
* /tmp must be > 10 MB.

Hardware
configuration
OK?

Make sure no other
verification is running.

 Slow verification can be normal.
» Consider splitting the application
or using -unit-by-unit verification.

Application >
50K lines?

« Slow verification can be normal
using a generated main.
e Consider using -unit-by-unit

o Application >
verification. :
. 10K lines?
* Manually generate a main for the
application.

* If you have passed level 0, you
have meaningful results at level 0;
open the PolySpace Viewer.

e Set tuning options when relevant.

* Reduce procedure complexity.

Still
blocked?

7-35

7 Troubleshooting Verification Problems

7-36

Reducing Code Complexity

To reduce code complexity, The MathWorks recommends that you try the
following techniques, in the order listed:

¢ “Reducing Procedure Complexity” on page 7-47
¢ “Reducing Task Complexity” on page 7-49
¢ “Reducing Variable Complexity” on page 7-50

After you use any of these techniques, restart the verification.

Turning Antivirus Software Off

Disabling or switching off any third-party antivirus software for the duration
of a verification can reduce the verification time by up to 40%.

Tuning PolySpace Parameters

Impact of Parameter Settings

Compromise to balance the time required to perform a verification and the
time required to review the results. Launching PolySpace verification with
the following options reduces the time taken for verification. However, these
parameter settings compromise the precision of the results. The less precise
the results of the verification, the more time you can spend reviewing the
results.

Recommended Parameter Tuning

The MathWorks suggests that you use the parameters in the sequence listed.
If the first suggestion does not increase the speed of verification sufficiently,
then introduce the second, and so on.

Switch from -O2 to a lower precision;

Set the -respect-types-in-globals and -respect-types-in-fields
options;

Set the -k-1imiting option to 2, then 1, or O;

Manually stub missing functions which write into their arguments.

Reducing Verification Time

¢ If some code uses some large arrays, use the -no-fold option.
For example, an appropriate launching command is

polyspace-c -00 -respect-types-in-globals -k-limiting O

Subdividing Code

“An Ideal Application Size” on page 7-37

e “Benefits of Subdividing Code” on page 7-37

® “Possible Issues with Subdividing Code” on page 7-38
¢ “Recommended Approach” on page 7-39

® “Selecting a Subset of Code” on page 7-41

An Ideal Application Size

People have used PolySpace software to analyze numerous applications with
greater than 100,000 lines of code.

There always is a compromise between the time and resources required to
analyze an application, and the resulting selectivity. The larger the project
size, the broader the approximations PolySpace software makes. Broader
approximations produce more oranges. Large applications can require you to
spend much more time analyzing the results and your application.

These approximations enable PolySpace software to extend the range of
project sizes it can manage, to perform the verification further, and to solve
traditionally incomputable problems. Balance the benefits derived from
verifying a whole large application against the loss of precision that results.

Benefits of Subdividing Code

Subdividing a large application into smaller subsets of code provides several
benefits. You:

® Quickly isolate a meaningful subset

e Keep all functional modules

7-37

7 Troubleshooting Verification Problems

7-38

¢ Can maintain a high precision level (for example, level O2)

Reduce the number of orange items

® Get correct results are correct because you do not need to remove any
thread affecting change shared data

Reduce the code complexity considerably

Possible Issues with Subdividing Code

Subdividing code can lead to these problems:

¢ Orange checks can result from a lack of information regarding the
relationship between modules, tasks, or variables.

¢ Orange checks can result from using too wide a range of values for stubbed
functions.

® Some loss of precision; the verification consider all possible values for a
variable.

When the Application is Incomplete. When the code consists of a small
subset of a larger project, PolySpace software automatically stubs many
procedures. PolySpace bases the stubbing on the specification or prototype of
the missing functions. PolySpace verification assumes that all possible values
for the parameter type are returnable.

Consider two 32-bit integers a and b, which are initialized with their full
range due to missing functions. Here, a*b causes an overflow, because a and b
can be equal to 2*31. Precise stubbing can reduce the number of incidences of
these data set issue

Now consider a procedure f that modifies its input parameters a and b.
passes both parameters by reference. Suppose a can be from 0 through 10,
and b any value between -10 and 10. In an automatically stubbed function,
the combination a=10 and b=10 is possible, even if it is not possible with the
real function. This situation introduces orange checks in a code snippet such
as 1/(a*b - 100), where the division would be

® So, even with precise stubbing, verification of a small section of code can
introduce extra orange checks. However, the net effect from reducing the
complexity is to reduce the total number of orange checks.

Reducing Verification Time

e With default stubbing, the increase in the number of orange checks as the
result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size. PolySpace can make
approximations when computing the possible values of the variables, at any
point in the program. Such an approximation use a superset of the actual
possible values.

For instance, in a relatively small application, PolySpace software can retain
detailed information about the data at a particular point in the code. For
example, the variable VAR can take the values

{-2;1;2;10;15;16;17; 25}

If the code uses VAR to divide, the division is green (because 0 is not a possible
value).

If the program is large, PolySpace software simplifies the internal data
representation by using a less precise approximation, such as:

[-2 ; 2] U {10} U [15 ; 17] U {25}
Here, the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace can further simplify the VAR range to (for example):

[-2 ; 20]

This phenomenon increases the number of orange warnings when the size of
the program becomes large.

Recommended Approach

The MathWorks recommends that you begin with file-by-file verifications
(when dealing with C language), package-by-package verifications (when
dealing with Ada language), and class-by-class verifications (when dealing
with C++ language).

7-39

7 Troubleshooting Verification Problems

7-40

The maximum application size is between 20,000 (for C++) and 50,000 lines of
code (for C and Ada). For such applications of that size, approximations are
not too significant. However, sometimes verification time is extensive.

Experience suggests that subdividing an application before verification
normally has a beneficial impact on selectivity. The verification produces
more red, green and gray checks, and fewer unproven orange checks. This
subdivision approach makes bug detection more efficient.

% of oranges

Oranges due to
complexity

Oranges due to
missing parts of
the software

Size (lines of code)

Best usage: 20 KB - 50 KB
lines of code

A compromise between selectivity and size

PolySpace verification is most effective when you use it as early as possible in
the development process, before any other form of testing.

When you analyze a small module (for example, a file, piece of code, or
package) using PolySpace software, focus on the red and gray checks. orange
unproven checks at this stage are interesting, because most of them deal with
robustness of the application. The orange checks change to red, gray, or green
as the project progresses and you integrate more modules.

In the integration process, code can become so large (50,000 lines of code or
more). This amount of code can cause the verification to take an unreasonable
amount of time. You have two options:

Reducing Verification Time

® Stop using PolySpace verification at this stage (you have gained many
benefits already).

® Analyze subsets of the code.

Selecting a Subset of Code

Subdividing a project for verification takes considerably less verification time
for the sum of the parts than for the whole project considered in one pass.
Consider data flow when you subdivide the code.

Consider two distinct concepts:

¢ Function entry-points — Function entry-points refer to the PolySpace
execution model, because they start concurrently, without any assumption
regarding sequence or priority. They represent the beginning of your call
tree.

® Data entry-points — Regard lines in the code that acquire data as data
entry points.

Example 1

int complete_treatment_based_on_x(int input)

{

thousand of line of computation...

}

Example 2

void main(void)
{
int x;
X = read_sensor();
y = complete_treatment_based_on_x(x);

}

Example 3

#define REGISTER_1 (*(int *)0x2002002)
void main(void)

{

7-41

7 Troubleshooting Verification Problems

7-42

x = REGISTER_1;
complete treatment_based_on_x(X);

In each case, the x variable is a data entry point and y is the consequence of
such an entry point. y can be formatted data, due to a complex manipulation
of x.

Because x is volatile, a probable consequence is that y contains

all possible formatted data. You could remove the procedure
complete_treatment_based_on_x completely, and let automatic stubbing
work. The verification process considers y as potentially taking any value in
the full range data (see “Stubbing” on page 5-2).

//removed definition of complete_ treatment_based on_x
void main(void)
{

X

// what ever
complete treatment_based_on_x(x); // now stubbed!

}

Typical Examples of Removable Components, According to the Logic
of the Data. Here are some examples of removable components, based on
the logic of the data:

¢ Error management modules often contain a large array of structures
accessed through an API, but return only a Boolean value. Removing the
API code and retaining the prototype causes the automatically generated
stub to return a value in the range [-2°31, 2731-1], which includes 1 and
0. PolySpace considers the procedure able to return all possible answers,
just like reality.

¢ Buffer management for mailboxes coming from missing code —
Suppose an application reads a huge buffer of 1024 char. The application
then uses the buffer to populate three small arrays of data, using a
complicated algorithm before passing it to the main module. If the
verification excludes the buffer, and initializes the arrays with random
values instead, then the verification of the remaining code is just the same.

® Display modules

Reducing Verification Time

Subdivision According to Data Flow. Consider the following example.

Module A reads variables vari1,var2,var3
and produces variables var4,var5,varé

vari —e

vara —

var3 —e

Module A — var4d —| Module B

containing more
than one function

A1l
A2

A3 — Vare — B3

— var5 —-ms

containing more
than one function
B1
B2

In this application, vari, var2, and var3 can vary between the following

ranges:
vari From 0 through 10
var2 From 1 through 100
var3 From —10 through 10

Module A consists of an algorithm that interpolates between var1 and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to O,

the result in var4 is also equal to O.

As a result, var4, var5, and varé have the following specifications:

Ranges var4 Between —60 and 110
var5s From 0 through 12
varé From 0 through 100
Properties | And a set of e If var2 is equal to O, then var4 >

properties between
variables

var5 > 5.

e Ifvar3is greater than 4, then var4
< varb < 12

7-43

7 Troubleshooting Verification Problems

7-44

Subdivision in accordance with data flow allows you to analyze modules A
and B separately:

® Auses vari, var2, and var3, initialized respectively to [0;10], [1;100],
and [-10;10].

® B uses var4, vars, and vare, initialized respectively to [-60;110], [0;12],
and [-10;10].

The consequences are:

® A slight loss of precision on the B module verification, because now
PolySpace considers all combinations for var4, var5, and varé. It includes
all possible combinations, even those combinations that the module A
verification restricts.

For example, if the B module included the test
If var2 is equal to 0, then var4 > var5 > 5
then the dead code on any subsequent else clause is undetected.

® An in-depth investigation of the code is not necessary to isolate a
meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data.

® The results remain valid, because there no requirement to remove (for
example) a thread that changes shared data.

® The code is less complex.

® You can maintain the maximum precision level.
Typical examples of removable components:

® Error management modules. A function has_an_error_already_occurred
can return TRUE or FALSE. Such a module can contain a large array of
structures accessed through an API. Removing API code with the retention
of the prototype results in the PolySpace verification producing a stub that
returns [-2731, 2731-1]. That result clearly includes 1 and 0 (yes and
no). The procedure has_an_error_already occurred returns all possible
answers, just like the code would at execution time.

Reducing Verification Time

¢ Buffer management for mailboxes coming from missing code. Suppose the
code reads a large buffer of 1024 char and then collates the data into three
small arrays of data, using a complicated algorithm. It then gives this data
to a main module for treatment. For the verification, PolySpace can remove
the buffer and initialize the arrays with random values.

¢ Display modules.

Subdivide According to Real-Time Characteristics. Another way to split
an application is to isolate files which contain only a subset of tasks, and
to analyze each subset separately.

If a verification initiates using only a few tasks, PolySpace loses information
regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and reads it at a particular moment, the values of x affect
subsequent operations in T2.

For example, consider that T1 can write either 10 or 12 into x and that T2 can
both write 15 into x and read the value of x. Two ways to achieve a sound
standalone verification of T2 are:

® You could declare x as volatile to take into account all possible executions.
Otherwise, x takes only its initial value or x variable remains constant,
and verification of T2 is a subset of possible execution paths. You can get
precise results, but it includes one scenario among all possible states for
the variable x.

® You could initialize x to the whole possible range [10;15], and then call
the T2 entry-point. This approach is accurate if x is calibration data.

Subdivide According to Files. This method is simple, but it can produce
good results when you are trying to find red errors and bugs in gray code.

7-45

7 Troubleshooting Verification Problems

Simply extract a subset of files and perform a verification using one of these
approaches:

e Use entry points.

® Create a main that calls randomly all functions that the subset of the code
does not call.

7-46

Reducing Verification Time

Reducing Procedure Complexity

If the log file does not display any messages for several hours, you probably
have a scaling issue. You can reduce the complexity of some of the procedures
by cloning the calling context for specific procedures. One way to reduce
complexity is to specify the -inline option on procedures whose names
appear in the log file in one or both of two lists.

The -inline option creates clones of each specified procedure for each call to
it. This option reduces the number of aliases in a procedure, and can improve
precision in some situations.
Suppose that the log file contains two lists that look like the following:

%%% BEGIN PRE%%%

* inlining procedure_1 could decrease the number of aliases of parameter #3 from 752 to 3

* inlining procedure_2 could decrease the number of aliases of parameter #3 from 2687 to 3

* inlining procedure_3 could decrease the number of aliases of parameter #4 from 1542 to 4

%%%END PRES:%%

%%% BEGIN PRE%%%

procedures that write the biggest sets of aliases: procedure 4 (2442), procedure 2 (1120), procedure 5 (500)

%%%END PRE%%%

Looking at this example log file, procedure_1 through procedure_5 are good
candidates to be inlined.

Follow the steps on this flow chart to determine which procedure_x must be
inlined, that is, for which procedure_x you need to specify the -inline option.

7-47

7 Troubleshooting Verification Problems

Do you need to inline
procedure_x?

write into
its own

parameters
?

have variable #
of arguments

have no
loops

Add
procedure_y . pass pointer
B to the -inline list if and only if | _ Yes parameters to

-~ procedure_y -
is called outside the context of
procedure_x

another procedure
(procedure_y)
?

Y

Add
procedure_x
to the -inline list

Do not
inline
procedure_x

Here are three example situations:
¢ Using the preceding log file, inline procedure_2 because it appears in both
lists. In addition, if it has no loops, inline procedure_5.

¢ Inline procedures that have a variable number of arguments, such as
printf and sprintf.

¢ In the following examples, consider whether each procedure, procedure_x,
passes its pointer parameters to another procedure.

7-48

Reducing Verification Time

Does this procedure pass pointer parameters?

Yes No No
void procedure_x(int *p) void procedure_x(int Q) void procedure_x(int *r)
{ {
procedure_y(p) *r =12
} }

Exercise caution when you inline procedures. Inlining duplicates code and
can drastically increase the number of lines of code, resulting in increased
computation time.

For example, suppose procedure_2 has 30 lines of codes and is called 30
times; procedure_5 has 100 lines of code and is called 50 times. The number
of lines of code becomes more than 5000 lines, so computation time increases.

Reducing Task Complexity

If the code contains two or more tasks, and particularly if there are more than
10000 alias reads, set the -1ightweight-thread-model option. This option
reduces:

e Task complexity

¢ Verification time
There are some pitfalls:

¢ [t causes more oranges and a slight loss of precision on reads of shared
variables through pointers.

¢ The dictionary can omit some read/write accesses.

7-49

7 Troubleshooting Verification Problems

7-50

Reducing Variable Complexity

Variable Action
Characteristic

The types are complex. Set the -k-1imiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision.

There are large arrays Set the -no-fold option.

Choosing Lower Precision

The amount of simplification applied to the data representations depends on
the required precision level (00, O2), PolySpace software adjusts the level of
simplification. For example:

® -00 — shorter computation time

® -02 — less orange warnings

® -03 — less orange warnings and longer computation time. The MathWorks
recommends using this option only for projects containing less than 1,000
lines of code.

Obtaining Configuration Information

Obtaining Configuration Information

The polyspace-ver command allows you to gather information quickly about
your system configuration. Use this information when entering support
requests.

Configuration information includes:

e Hardware configuration

Operating system

PolySpace licenses

® Specific version numbers for PolySpace products
To obtain your configuration information, enter the following command:

e UNIX./Linux — <PolySpaceInstallDir>/Verifier/bin/polyspace-ver

* Windows —
<PolySpaceInstallDir>/Verifier/wbin/polyspace-ver.exe

The configuration information appears.

7-51

7 Troubleshooting Verification Problems

CA\WINNT \system32\cmd.exe

C:“PolySpace“PolySpaceFo ndCPP_R28@9b\Uerif iersubin>polyspace—ver.exe
Machine Hardware Configuration:

Number of CPlUs
CPU frequency
CPU type

Memory

Swap

stmp free space

Machine Software Configuration:

Windows P <(Service Pack 32

PolySpace Licenses:

PolySpace_Client_C_CPP:
License Mumber: DEMO
Expiration date: 28-oct—-2809

PolySpace_Server C_CPP:
License Numher: DEMO
Expiration date: 28-oct-2089%

FPolySpace _Model_Link_SL:
License Number: DEMO
Expiration date: 28-oct-208%

PolySpace Uersions:

PolySpace Uersion RZBB%h

=* Kernel CC-7.1.8.U1

= Uiewer IHME-R2B89h-U%
= Launcher IHML-R2B@7h-U%
= Remote Launcher RL-R28BA%h—U6
* Uiswal Plugin PUPG_B_1 &5

* PolySpace In One Click POC-R2B09h—-V4
= MBD Plugin HED-R2AA7h-U4
* Automatic Orange Tester AOT-R2B09bh-U4

Remote Launcher configuration
* Compatibility version 3_12_2

Server :
FPolySpace_Server_ C_CPP.mathworks.com

C:sPolySpacesPolySpaceForCandCPP_RZ2BA7h“Verifierswhin’>

Note You can obtain the same configuration information by selecting
Help > About in the Launcher.

7-52

Removing Preliminary Results Files

Removing Preliminary Results Files

By default, the software automatically deletes preliminary results files
when the verification no longer needs them. However, if you run a client
verification using the option keep-all-files, the software retains the
preliminary results files in the results folder. Saving these files allows you
to restart the verification from any stage, but can leave unnecessary files in
your results folder.

If you later decide that you no longer need these files, you can remove them.
To remove preliminary results files:

1 Open the project containing the results you want to delete In the Launcher.

2 Select Tools > Clean Results to delete the preliminary results files.

Note To remove all verification results from your results folder (including
the final results), select Tools > Delete Results.

7-53

7 Troubleshooting Verification Problems

7-54

Reviewing Verification
Results

e “Before You Review PolySpace Results” on page 8-2

® “Opening Verification Results” on page 8-8

* “Reviewing Results in Assistant Mode” on page 8-26

¢ “Reviewing Results in Expert Mode” on page 8-36

* “Tracking Review Progress” on page 8-47

* “‘Importing and Exporting Review Comments” on page 8-53
® “Generating Reports of Verification Results” on page 8-58

e “Using PolySpace Results” on page 8-67

8 Reviewing Verification Results

8-2

Before You R

eview PolySpace Results

In this section...

“Overview: Understanding PolySpace Results” on page 8-2
“Why Gray Follows Red and Green Follows Orange” on page 8-3
“The Message and What It Means” on page 8-4

“The C Explanation” on page 8-5

Overview: Understanding PolySpace Results

PolySpace software presents verification results as colored entries in the
source code. There are four main colors in the results:

Red — Indicates code that always has an error (errors occur every time
the code is executed).

Gray — Indicates unreachable code (dead code).
Orange — Indicates unproven code (code might have a run-time error).

Green — Indicates code that never has a run-time error (safe code).

When you analyze these colors, remember these rules:

An instruction is verified only if no run-time error is detected in the
previous instruction.

The verification assumes that each run-time error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run-time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

Focus on the verification message. Do not jump to false conclusions. You
must understand the color of a check step by step, until you find the root
cause of a problem.

Determine the cause by examining the actual code. Do not focus on what
the code is supposed to do.

Before You Review PolySpace® Results

Why Gray Follows Red and Green Follows Orange

Gray checks follow red checks, and green checks are propagated out of
checks.

In the following example, consider why:

¢ The gray checks follow the red in the red function.

® There are green checks relating to the array.

void red(void) extern int Read_An_Input(void);
{ void propagate(void)
int x; {
x =1/ x; int X;
X = x + 1; int y[100];
} X = Read_An_Input();
y[X] =05 //
y[X] = 0;
}

Consider each line of code for the red function:

¢ When PolySpace divides by X, X is not initialized. Therefore, the
corresponding check (Non Initialized Variable) on X is red.

® As a result, PolySpace stops all possible execution paths because they
all produce an RTE. Therefore, the subsequent instructions are gray
(unreachable code).

Now, consider each line of code for the propagate function:

® Xis assigned the return value of Read_An_Input. After this assignment,
X = [-2731, 2731-1].

® At the first array access, you might see an “out of bounds” error because
X can equal -3 as well as 3.

® Subsequently, all conditions leading to an RTE are truncated — they are no
longer considered in the verification. On the following line, all executions
in which X = [-2731, -1] and [100, 2731-1] are stopped.

8 Reviewing Verification Results

® At the next instruction, X = [0, 99].

e Therefore, at the second array access, the check is green because X = [0, 99].

Summary
Green checks can be propagated out of checks.

The Message and What It Means

PolySpace software numbers checks to correspond to the code execution order.
Consider the instruction x++;

PolySpace first checks for a potential NIV (Non Initialized Variable) for
x, and then checks the potential OVFL (overflow). This action mimics the
actual execution sequence.

Understanding these sequences can help you understand the message
presented by PolySpace, and what that message means.

Consider an orange NIV on x in the test:
if (x > 101);

You might conclude that the verification does not keep track of the value of x.
However, consider the context in which the check is made:

extern int read_an_input(void);

void main(void)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) //
{ x++; } // gray code
}

Before You Review PolySpace® Results

Explanation

You can see the category of each check by clicking it in the Viewer. When you
examine an orange check, you see that any value of a variable that would that
results in a run-time error (RTE) is not considered further. However, as this
example NIV (Non Initialized Variable) shows, any value that does not cause
an RTE is verified on subsequent lines.

The correct interpretation of this verification result is that if x is initialized,
the only possible value for it is 100. Therefore, x can never be both initialized
and greater than 101, so the rest of the code is gray. This conclusion may be
different from what you first suspect.

Summary
In summary:

® "(x>100)" does NOT mean that PolySpace does not know anything about x.

e "(x > 100)" DOES mean that PolySpace does not know whether X is
initialized.

When you review results, remember:

® Focus on the PolySpace software message.

® Do not assume any conclusions.

The C Explanation

Verification results depend entirely on the code that you are verifying. When
interpreting the results, do not consider:

® Any physical action from the environment in which the code operates.
® Any configuration that is not part of the verification.

® Any reason other than the code itself.
The only thing that the verification considers is the C code submitted to it.

Consider the following example, paying particular attention to the dead (gray)
code following the "if" statement:

8-5

8 Reviewing Verification Results

8-6

extern int read_an_input(void);

void main(void)
{
int x;
int y[100];
X = read_an_input();
yix 1 =20; //
yIx-11 = (1 / X) + X 3
if (x == 0)
y[x] = 1; // gray code on this line
}

You can see that:

® The line containing the access to the y array is unreachable.
® Therefore, the test to assess whether x = 0 is always false.

¢ The initial conclusion is that "the test is always false." You might
conclude that this results from input data that is not equal to 0. However,
Read_An_Input can be any value in the full integer range, so this is not the
correct explanation.

Instead, consider the execution path leading to the gray code:

® The orange check on the array access (y[x]) truncates any execution path
leading to a run-time error, meaning that subsequent lines deal with only
x = [0, 99].

® The orange check on the division also truncates all execution paths that
lead to a run-time error, so all instances where x = 0 are also stopped.
Therefore, for the code execution path after the orange division sign, x
= [1; 99].

® x is never equal to O at this line. The array access is green (y (x — 1).

Summary

In this example, all the results are located in the same procedure. However,
by using the call tree, you can follow the same process even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called

Before You Review PolySpace® Results

by" call tree, and concentrate on explaining the issues by reference to
the code alone.

8-7

8 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 8-8
“Downloading Server Results Using Command Line” on page 8-11
“Downloading Results from Unit-by-Unit Verifications” on page 8-12
“Opening Verification Results” on page 8-12

“Exploring the Viewer Window” on page 8-13

“Selecting Viewer Mode” on page 8-23

“Searching Results in Viewer” on page 8-23

“Setting Character Encoding Preferences” on page 8-24

Downloading Results from Server to Client

When you run a verification on a PolySpace server, the PolySpace software
stores the results on the PolySpace server. To view your results, download the
results file from the server to the client.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

To download verification results to your client system:

1 Double-click the PolySpace Spooler icon.

Spooler

The PolySpace Queue Manager Interface opens.

Opening Verification Results

_iBix)
Operations Help
ID ¢ | Author Application Results folder CPU Status Date Language
----- 1 |Polyspace [Demo_Cpp Ci\PolySpace \PolySpaceForCandCPP_R... jrunstroms |completed |04-Sep-2009, 16:32:23 |CPP
----- 4 |PolySpace [Demo_C C:'\PolySpace\PolySpaceForCandCPP_R... frunstroms |completed |14-Dec-2009, 15:25:08 |C
----- 5 |polyspace [Demo_C_Singl... |C:\PaolySpace\PolySpaceForCandCPP_R... |runstroms |running 14-Dec-2009, 15:33:38 [C
----- & |username [Example_Project |C:\PolySpace\polyspace_projectiresults queued 14-Dec-2009, 15:34:41 |C

Connected to Queue Manager localhost

User mode

2 Right-click the job that you want to view. From the context menu, select
Download Results .

Note To remove the job from the queue after downloading your results,
from the context menu, select Download Results And Remove From
Queue .

The Browse For Folder dialog box opens.

8 Reviewing Verification Results

8-10

Directory where ko store the results

123 Perl ;I
=) PolySpace
=l 153 polyspace_project
I includes J
I resulks
I sources
I3 PalySpace_Results -
Folder: I results

Make Mew Faolder | (o] 4 I Cancel |

4

3 Select the folder into which you want to download results.
4 Click OK to download the results and close the dialog box.

When the download is complete, a dialog box opens asking if you want to
open the PolySpace Viewer.

Queston X

Downlaad completed, Da you wank ko open PalvSpace Yiewer 7

Yes Mo |

5 Click Yes to open the results.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

Opening Verification Results

Downloading Server Results Using Command Line

You can download verification results from the command line using the
psqueue-download command.

To download your results, enter the following command:

<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-download <id>
<results dir>

The verification <id> is downloaded into the results folder <results dir>.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

The psqueue-download ccmmand has the following options:

e [-f] force download (without interactivity)
e -admin -p <password> allows administrator to download results.
e [-server <name>[:port]] selects a specific Queue Manager.

® [-v]|version] gives release number.

Note When downloading a unit-by-unit verification group, all the unit
results are downloaded and a summary of the download status for each unit
is displayed.

For more information on managing verification jobs from the command line,
see “Managing Verifications in Batch” on page 6-27.

8-11

8 Reviewing Verification Results

Downloading Results from Unit-by-Unit Verifications

If you run a unit-by-unit verification, each source file in sent to PolySpace
Server individually. The queue manager displays a job for the full verification
group, as well as jobs for each unit (using a tree structure).

You can download and view verification results for the entire project, or for
individual units.

To download the results from unit-by-unit verifications:
¢ To download results for an individual unit, right-click the job for that unit,

then select Download Results.

The individual results are downloaded and can be viewed as any other
verification results.

¢ To download results for a verification group, right-click the group job, then
select Download Results.

The results for all unit verifications are downloaded, as well as an HTML
summary of results for the entire verification group.

PolySpace Unit By Unit Results Synthesis
Green Red Greyv Total Selectivity Results Log file

Source compliance phase results Open log file
Unit single_file_analysis 97 2 4 1111 93% | Open results Open log file
Unit main 12 17 75% | Open results Open log file
Unit example Q9 5 77 | 191 95% Openresults Open log file
Unit tasks2 30 32 94% | Open results Open log file
Unit initialisations 52 3 61 90% | Open results Open log file
Unit tasks] 33 38 87% |Open results Open log file

323 7 84 450 92%

Opening Verification Results
Use the PolySpace Viewer to review the results of your verification.

8-12

Opening Verification Results

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

To open the verification results:

1 Double-click the PolySpace Viewer icon.

2 Select File > Open.

3 In Please select a file dialog box, select the results file that you want
to view.

4 Click Open.

The results appear in the Viewer window.

Exploring the Viewer Window

® “Overview” on page 8-13

¢ “Procedural Entities View” on page 8-15

® “Source Code View” on page 8-17

® “Coding Review Progress View” on page 8-18
e “Selected Check View” on page 8-19

® “Variables View” on page 8-19

e “Call Tree View” on page 8-22

Overview
The PolySpace Viewer looks like the following graphic.

8-13

8 Reviewing Verification Results

Coding review progress view

PolySpace Viewer - C:\PolySpace\po|

File Edit Reports Windows Help

Selected check view

space_project_c\results\RTE_px_Example_Project_LAST_RESULTS.rte _

=o =]

[6n = o|s =

H e 1 J 'Eg's-ﬂlffj-mpha vl(@)mimml

JSeard'\ in: | Activ|: Source Code | ™ I

He~ 1255

J Reviewed filter off 'I x| PRECT | ommozov MY SERL e com o me s MY we TR mser o wro o kaTo [Tl une o von
Coding review progress Count Progress example.c / Recursion_caller / line 157 / column 5
num NTC reviewed / num NTC to review (Red) 13 33 Becursion{ sx); // zlways encounters = division by zero
num reviewed | num to review (Red) 1fs 20/
Software reliability indicator l99/191 51 |7|NOW L” =l @I
the example.c.Recursion call never terminates
Procedural entities i % | Detalls |Reviewed|Acronym Call Tree View ol
| 5ej Example_Project 5 E r 2[5
E 4 2 fexample.c r
12 | 77 example.c
- ° r Example_Froject
& | 11 | 100 fexample.c r .
[E]-__polyspace_ stdstubs.emo o F 175 4 - b pst_stubs_D.random_int 152
RRE 2| 88 |12 | % jpamekc r _
w4 _polyspace _stdstubs. init | 75| 4 - b example, Recursion 157
3| 222| 5 | 100 fexample.c r
-4 _polyspace_ stdstubs.sart 285(31 - b example Recursion 147
4| 137 | 12 | 83 |examplec r
pst_stubs_O.random Jint 182
4151 | 12 | 100 jexample.c r
examle. Recursion 184
182 | 10 ffunctionr...| [T
example.Recurs|on 147
155 8 local varia..| [T] -
155 | 18 local varia..| [T 'vs- i o
polyspace_min.main 5
157 5 heeam..| [[NOW e
8z 5 ffunctionr...| [T 4] | |
2 4| 185 | 12 | 100 jexample.c r
o |2 woparene | ErTEESSSS— BET
3 2158 | 12 | 92 jexample.c r =]
2z]2t [11] 50 fexamplec r 150
% |8 raming : .| r 151 atatic woid Recursion_caller (woid)
|z s 152 |4 int x=randow int():
% |10 local varia..| [T L33
27 |8 local varia..| [T 154
1558 if (i(x»-4) s& (2 < -11)
2|14 1 % | polysps.| [T Tee o =
2|1 100
- [-poivsea r 157 Recursion(&x): /4 always encounters a diwision by zero i
136 } Q‘
159
160
161 ® = 10;
lez if {random_int(] > 0]
163 i Jid|

the exal

nple.c.Recursion call never terminates Col: 5

Procedural
entities view

8-14

Variables
view

Source code
view

Call tree
view

The appearance of the Viewer toolbar depends on the Viewer mode. By
default, you see the expert mode toolbar.

Opening Verification Results

A B e 1| & e 3] 6 amn

FREOC
-¢-x- OBAl - ZOW -

NIV |
local

NIV

SCAL |
other

FLOAT
QUFL BB

InE " OuFL

COR o IRM - SHF -

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The

following table describes these views.

This View...

Displays...

Procedural entities view (lower left)

List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right)

Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right)

Details about the selected check

Variables view

Information about global variables
declared in the source code

Call tree view

Tree structure of function calls

You can resize or hide any of these sections.

Procedural Entities View

The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)

view.

8-15

8 Reviewing Verification Results

8-16

Procedural entities i1 ~|Line| Col| & Details Reviewed| Acronym
|40 13 88 r
4= 12| 1 72 |zamplz.o -
i 85| pohyspace_ stdstubs.c I-
j...._PDhrEpaDa_n’air_c 1 0 | pohyspace_main.c I-

The file example.c is red because its has a run-time error. PolySpace software
assigns to a file the color of the most severe error found in that file. The first
column of the table is the procedural entity (the file or function). The following
table describes some of the other columns in the procedural entities view.

Column
Heading

Indicates

[1]

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

e | | | 1 | 1

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

Note You can select which columns appear in the procedural entities view
by right-clicking the Procedural entities column heading, and selecting the
columns you want to display.

Opening Verification Results

What you select in the procedural entities view determines what you see in
the other views. In the examples in this chapter, you learn how to use the
views and how they interact.

Source Code View

The source code view (in the lower-right part of the Viewer window), shows
the source code with colored checks highlighted.

i x]

137 static woid Recursion (int* depth)

1laa /% if depth<0, recursion will lead to division by zero %/

139 ! float adwance:

140

141 Fdepth = %*depth + 1:

l4az advance = 1.0f/(float) (*depth); /% potential diwvision by =zero */
143

144

145 if (Fdepth < 50)

148 {

147 Fecursioni(depth);

145 i

149 1 [
150

151 gtatic vold Recursion caller (woid)

15z ! int x=random Jnt();
153 - 3 31
154 returned value of random_int (int 32): fullrange [-2°°.. 2°°-1] |

155 if Q(xx-4) s& [x < -1))
156 {
157 Fecursioni &x 1! /7 always encounters a division by zero

158 } LI

Tooltips. Placing your cursor over a check displays a tooltip that provides
ranges for variables, operands, function parameters, and return values. For
more information on tooltips, see “Using Range Information in the Viewer”
on page 8-70.

Additional Information on checks. Clicking a check opens a message box
that provides more information about the check.

8-17

8 Reviewing Verification Results

sa cxample.Pointer_ArithmeticIDP.B -0 x|

{in "example.c” ling 104 column 10
Source code ;

[Error : pointer is outside its bounds

Coding Review Progress View

The Coding review progress view (upper-left part of the Viewer window),
displays statistics about how many checks you have reviewed. As you review
checks, the software updates these statistics.

Coding review progress Count | Progress
{inum ICP reviewed / num IDP to review (Red) [1/1 100
linum reviewed / num to review (Red) 1/5 20
Software reliability indicator 113/230 49

The Count column displays a ratio and the Progress column displays the
equivalent percentage.

The first row displays the ratio of reviewed checks to total checks that have
the same color and category of the current check. In this example, the first
row displays the ratio of reviewed red IDP checks to total red IDP errors in
the project.

The second row displays the ratio of reviewed checks to total checks that have
the color of the current check. In this example, this is the ratio of red errors

reviewed to total red errors in the project.

The third row displays the ratio of the number of green checks to the total
number of checks, providing an indicator of the reliability of the software.

8-18

Opening Verification Results

Selected Check View

The Selected check view (upper-right part of the Viewer window) displays
information about the current check.

example.c / Pointer_Arithmetic / line 104 f column 10

mo= 5; / Out of bounds */

W [now =] = & |rix wow

rror @ pointer is outside its bounds

dereference of wvariabkle 'p' (pointer to int 32, size: 32 bita):
pointer is not null

points to 4 bytes at offset 400 in allocated buffer of 400 bytes
may point to varisble or field of veriable in: [Pointer Arithmetic:array}

When reviewing checks, you use the Selected check view to mark checks as
Reviewed, and enter comments to describe the results of your review. This

helps you track the progress of your review and avoid reviewing the same
check twice.

For more information, see “Reviewing and Commenting Checks ” on page 8-48.

Variables View

The variables view displays global variables and where in the source code
they are read or written to.

8-19

8 Reviewing Verification Results

8-20

o
%’ N-ZHR
Varishles £ Rizad| # Write| W.T. R.T. Protection | Usa... Fil= Col| Detailed Typs
single_file_anahysis.vE i 2 single... | 14 | 11 [int 18 :I
=1 Fowerleve 4 3 (3415 |t t4 15 shared |tasksi.c| 26 | 4 |int 32
SHR 1 2 |34 |tB Critical section |shared |tasks1.c| 30 | 11 [int 32
HR2 1 3 |[t3td |tB shared [tasksi.c| 31 | 11 |int 32
tasks1 5HR2 1 z tzsksi.c| 112 | 13 |int 32
HF4 2 Lol R | shared |tasksi.c| 28 | 11 |struct {A int...
----- 4 tssks1._init_globsls tasksic| 28 | 11
----- 4 tasks?.orderegulste taskslc| 41 | 2
----- 4 taskst.proc2 taskslc| 114 Z
----- B tazksiorderegulste tasksic| 42 | 13
----- B tasksi.procZ tasksic| 115 | 20
----- || tzsk=1.proc2 7
----- 4| | tzzket zerven 2
----- d|| tasksizerverz 4
----- || tzske1 tr=guizts 5
----- | |} tasks1.proc 2
----- | |} tasks1.s=rvert t3
----- [|p tsskst zerverz 4
----- | [w tasksi.trgulatz t5 |
[H-~tasks 1. SHRE z Z |t t1 t2 |Temporal ex... [shared tasksi.c) 2% | 11 |int 32
[+]-tasks 1 SHRE 2 1 tasksi.c| 32 | 11 [int 32 ll

Non Shared Variables.

Concurrent Access Graph. Click the Show Access Graph button

Click the Non-Shared Variables button ﬂl in the
Variables View toolbar to show or hide non-shared variables.

3

in

the Variables View toolbar to display a graph of read and write access for

the selected variable.

Opening Verification Results

Demo_C - Concurrent access graph for tasks1.c SHR4 - | Ellil

&>

Demo_C - Concurrent access graph for tasks1l.c SHR4 2% |

tasksl.c

>y

server

tasksl.c

@

serverl

tasksl.c

©

tregulate

tasksl.c

@

proc2

tasksl.c

O

Tserver

tasks2.c tasks2.c tasksl.c
Pilat_Balance Command_Ordering SHR4 READ
tasks2.c tasksl.c
Exec_One_Cycle arderregulate
tasks2.c tasksl.c tasksl.c
Sequencer initregulate SHR4 WRITE

For more information, see “Displaying the Access Graph for Variables” on
page 8-41.

Legend Information. To display the legend for a variable, right-click the
variable and select Show legend.

8-21

8 Reviewing Verification Results

_lix

IItZL] tasksl.procl (procedure)

t2) tasksl.proc?2 (procedure)
t3) tasksl.serverl (procedure)
t4)} tasksl.=zerver? (procedure)
tS) tasksl.tregulate (procedure)

Call Tree View

The call tree view displays the call tree of functions in the source code. You
can use the call tree view to easily navigate up and down the call tree.

ol

Czlls Lime:
example. Recursion 137
e B example. Recursion 147
4 =xsmple.Recursion 147

[F- 4 =xamgle Recursion_csls T
E| 4 =xample RTE 235

: t. 4 _ pohyspace_main.main 51
El 4 example Recursion_caller 1684
E| 4 =xamgle RTE 235

fo 4 __polyspace_main.main 51

b [
Callers and Callees. Click the buttons ’EIF in the Call Tree View

toolbar to show or hide callers and callees.

Function Definitions. To go directly to the definition of a function, right-click
the function call and select Go to definition.

8-22

Opening Verification Results

Selecting Viewer Mode

You can review verification results in expert mode or assistant mode:

¢ In expert mode, you decide how you review the results.

¢ In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking the appropriate button
in the Viewer toolbar.

G pasistant

{J§_'.‘ Expert

Searching Results in Viewer

You can search your results and source code using the Search feature in the
Viewer toolbar.

The Search toolbar allows you to quickly enter search terms, specify search
options, and set the scope for your search.

JSear::h in; | Active Source Code | bt Iget_u:uil;uressure LI '('3' | ﬁ Iﬂ

v Active Source Code
RTE Tree View

Variables View

Calls Tree View

You can limit the scope of your search to one of four Viewer areas:

® Active Source code view
® Procedural entities (RTE) view
® Variables view

e (Call tree view

8-23

8 Reviewing Verification Results

8-24

Setting Character Encoding Preferences

If the source files that you want to verify are created on an operating system
that uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on
an operating system that uses different character encoding than your current
system.

To set the character encoding for a source file:

1 In the Viewer, select Edit > Preferences .

The Preferences PolySpace Viewer dialog box opens.

2 Select the Character encoding tab.

Opening Verification Results

5 PolySpace View

Tools Menu || Takle options || Toolbars options || Miscellaneous | Assistant configuration |; Character encodir
Specifies the character encoding used by the operating system on which the source file was created.
Thiz allowws you to view source files created on an operating system that uses different character encoding than the current system.
*ou can choose your character encoding with a double click on the wanted one in the following list.

Wiethamese (Aindows) eindows-1258)

16-bits UCS Transformation Format, byte order identified by an optional byte-order mark (UTF-16)
16-bits Unicode (or UCS) Transformation Format, little-endian byte order [x-LUTF-16LE-BCM)
16-hits Unicode Transformation Format, big-endian byte order [UTF-16EE)
16-hits Unicode Transformation Format, little-endian byte order [UTF-16LE)
G-hits UCS Transformation Format [UTF-5)
American Standard Code for Information Interchange [US-85C0)
Arabic (Aindows) [wwincdovys-1256)
Baltic: (Windowes) [wvindowys-1257)
Chinese (Simplified) [GEK)
Chinese (Simplified) PRC standard (GEG0E0)
Chinese (Simplified), EUC encoding, GB2312 [x-EC-CH)
Chinese (Traditional) [Bigs)
Chinese (Traditional) (Windows) [x-wyincowes-9500
Chinese (Traditional) with Hong Kong extensions [Bigs-HKECE)
Chinese (Traditional) with Hong Kong extensions (Aindovws) [x-MZ950-HKSCE)
Chinese (Tracltional), EUC encoding, CMS11643 (Plane 1-3) [x-ELIC-TVw)
Cyrillic for QAIndowes) [wvindowys-12517
Eastern European (Mindows) [wwinclovys-1250)
Greek (Windows) [wvindowy s-1253)
Hehrew (Windows) [weincdoves-1255)
Indic scripts [x-1SCN91)
Japanese WAndows) [wvincdonnes-31f)
Japanese with halfwicdth Katakana (Windows 150 2022) Ce-windows-50221)
[Reset to default character encoding: Japanese, Shift-JIS (Shift_JIS)]
Hote: “'ou must restart the Viewer to use the new character encoding settings.

’ Ok] ’ Apply] ’ Cancel]

3 Select the character encoding used by the operating system on which the
source file was created.

4 Click OK.

5 Close and restart the Viewer to use the new character encoding settings.

8-25

8 Reviewing Verification Results

8-26

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 8-26

“Switching to Assistant Mode” on page 8-26

“Selecting the Methodology and Criterion Level” on page 8-27
“Exploring Methodology for C” on page 8-28

“Defining a Custom Methodology” on page 8-30

“Reviewing Checks” on page 8-32

“Saving Review Comments” on page 8-34

What Is Assistant Mode?

In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
in this order:

1 All red checks (an error always occurs).

2 Orange checks known to produce errors in some situations (dark orange).
For example, red for one call to a procedure and green for another.

3 Some gray checks (UNR checks that are not nested within dead code
blocks).

4 Other orange checks (according to the selected methodology and criterion
level).

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 8-27.

Switching to Assistant Mode

If the Viewer is in assistant mode, the mode toggle button is Expert. If the
Viewer is in expert mode, the mode toggle button is Assistant. To switch
from expert mode to assistant mode:

Reviewing Results in Assistant Mode

.) G pssistant
® (Click the Viewer mode button

The Viewer window toolbar displays controls specific to assistant mode.

JIMethndnlngy for Model Based Designedj I |- Skip gray checks 4 <§ "%-' §> M
1 2 a

The controls for assistant mode include:

®* A menu to select the review methodology for orange checks.
® A slider to select the criterion level within that methodology.
® A check box for omitting gray checks.

® Arrows for navigating through the reviews.

Selecting the Methodology and Criterion Level

A methodology is a named configuration set that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology has
three criterion levels. Each level specifies the number of orange checks for a
given category. The levels correspond to different development phases that
have different review requirements. To select a methodology and level:

1 From the methodology menu, select Methodology for C.

lethodalogy for C LI
Methodalogy for Ada

Methodology for ©
Methodology for C++
Methodology for Model Based Designed

2 Select the appropriate level on the level slider.

J—

1 2 a

For the configuration Methodology for C, this table describes the three
levels.

8-27

8 Reviewing Verification Results

8-28

Level Description

1 Fresh code

2 Unit tested code
3 Code Review

These three levels correspond to phases of the development process.

Exploring Methodology for C

A methodology defines the number of orange checks that you review in
assistant mode. Each methodology has three criterion levels that specify
increasing levels of review. These levels correspond to different development
phases that have different review requirements.

Note You cannot change the parameters defined in the Methodology for C,
but you can create your own custom methodologies.

To examine the configuration for Methodology for C:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.
2 Select the Assistant configuration tab.

You see the configuration for Methodology for C.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

Reviewing Results in Assistant Mode

ameous | Assistant configuration i

~Mumber of checks to review:

Criterion 1 Criterion 2 Criterion 3
CComman
il 3 20 AL
P 10 S0 AL
S-O%FL |10 =0 AL
CoR 10 10
PChay = 10 AL
Pl l 10
F-oFL 2 10 20
ASRT 5 20
0 & CH+ only
CE&| 10 20 AL
SHF 3 10 AL
P 10 20
P 10 20
i anly
IR = 20 AL
4+ anly 1

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

8-29

8 Reviewing Verification Results

8-30

Configuration set

hethodalogy for C

Review threzhaold criterion
Criterian 1
Criterion 2

Criterion 3

Fresh code

it tested

Code reviesny

The table describes the criterion names for the configuration Methodology

for C.
Criterion Name in the Tooltip
1 Fresh code
2 Unit tested
3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the

dialog box.

Defining a Custom Methodology

A methodology defines the number of orange checks that you review in
assistant mode. You cannot change the predefined methodologies, such as
Methodology for C, but you can define your own methodology.

Custom methodologies can specify either a specific number of orange checks
to review, or a minimum percentage of orange checks that must be reviewed.
This percentage is calculated as:

(green checks + reviewed orange checks) / (green checks + total orange checks).

To define a custom methodology:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.

Reviewing Results in Assistant Mode

2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

—Configuration zet

Acid 2 st =
Methodology for Ada

Methodology for C
__fhﬂethu:udculngy for C++
methiodology for Model Bazed Desigh

The Create a new set dialog box opens.

x

@ Enter the name of the sek wou are creating.
Enter I Zancel |

4 Enter a name for the new configuration set, then click Enter.

5 If you would like to review orange checks by percentage, select Set
number of checks to review as percentage of green and justified
orange checks.

6 Enter a name for each criteria level.

7 Enter the total number of checks (or percentage of checks) to review for
each type of check, and each criteria level.

8-31

8 Reviewing Verification Results

Preferences PolySpace Viewer x|
Tools Menu | Toolbars options | Miscellaneous | Acronyms Assistant configuration | Character encoding |
Percentage of green and justified orange checks to obtain
This configuration menu allows the definition of different Criterion 1 Criterion 2 Criterion 3
configurations to use with the results review assistant. ~Comman
It allows: oV 10 25 100
o Creation of a new configuration set, MIVL 25 50 100
o Definition of the names for the three different
review criteria (used as tool tips of the slider), S-OVFL 25 50 100
o Definition of the number of checks to be reviewed COR 0 25 100
for each category. NIV 0 0 100
By default the number of checks is the maximum number to F-OWFL 25 25 100
review alnld can be: ASRT 0 10 100
- A positive number up to 9953,
-The ward all {or All or ALL) to select all the checks, —C & C++only
-The ward auto {or Auto or AUTO) for automatic check
selection (Ada only) OBAT 25 50 100
SHF 10 25 100
When the checkbox below is selected the number represents o 5 > o0
the percentage of green and justified orange checks to
obtain. MIP 0 25 100
The percentage is evaluated as follows:
(Green + Orange reviewed) [(Green + Orange). ~C only
In this case the value must be a number between 0 and 100. RV 10 25 100
~C++only
rConfiguration set
MNT
IMy Custom Set LI CPP
v Set number of checks to review as percentage FRV
of green and justified orange checks oop
rReview threshold criterion EXC
Criterion 1 Quality Level 2 ~Ada only
Criterion 2 Quality Level 3 EXCP
Criterion 3 Quality Level 4 POW
OK Apply Cancel

8 Click OK to save the methodology and close the dialog box.
Reviewing Checks

In assistant mode, you review checks in the order in which PolySpace software
presents them:

8-32

Reviewing Results in Assistant Mode

1 All reds.

2 All blocks of gray checks (the first check in each unreachable function).

Note You can omit gray checks. In the toolbar, select the Skip gray
checks check box.

3 Orange checks, according to the methodology and criterion level that you

select.

To navigate through these checks:

1 Click the forward arrow 4 .

¢ The procedural entities view (lower left), expands to show the current
check.

Procedural entities

ﬁ Example_Project

[f-__poly=space_main.c

[H]-example.c

Man |nfinite

[=]
=1

-
- L
[H--Pointer_Arthmatic
B

+-RTE

® The source code view (lower right) displays the source code for this check.

® The current check view (upper right) displays information about this
check.

8-33

8 Reviewing Verification Results

8-34

Note You can also display the call sequence for a check. See “Displaying
the Call Sequence for a Check” on page 8-40.

2 Review the current check.

After you review a check, you can enter comments to describe the results of
your review. You can also mark the check as Reviewed to help track your
review progress. For more information, see “Tracking Review Progress”

on page 8-47.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box opens asking if you want to start again
from the first check.

Wrapping search x|
@ End of the set of checks under review.
Do ol wank to skart again From the first check?

o |

4 Click No.

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same

check twice.
To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Reviewing Results in Assistant Mode

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

8-35

8 Reviewing Verification Results

8-36

Reviewing Results in Expert Mode

In this section...

“What Is Expert Mode?” on page 8-36

“Switching to Expert Mode” on page 8-36

“Selecting a Check to Review” on page 8-36

“Displaying the Call Sequence for a Check” on page 8-40
“Displaying the Access Graph for Variables” on page 8-41
“Filtering Checks” on page 8-42

“Types of Filters” on page 8-43

“Creating a Custom Filter” on page 8-44

“Saving Review Comments” on page 8-46

What Is Expert Mode?

In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode

If the Viewer is in expert mode, the mode toggle button is Assistant. If the
Viewer is in assistant mode, the mode toggle button is Expert. To switch
from assistant to expert mode:

e (Click the Viewer mode button:
{J§_'.‘ Expert

The Viewer window toolbar displays buttons and menus specific to expert
mode.

Selecting a Check to Review
To review a check in expert mode:

Reviewing Results in Expert Mode

1 In the procedural entities section of the window, expand any file containing
checks.

2 Expand the procedure containing the check that you want to review.

You see a color-coded list of the checks:

= HBREE R

..... W OVFL.2 T 94 |23 joperation [+] on scalar doss not ...
..... w IDF.2 T8 |8 pointer is within its bownds

..... - |RVE 110 & function returns an initislzed valus
..... ~F IRV.T 1[0z 5 function returns an initialzed valee
..... -j v X 1 04 | 10 Error : pointer is outside its bounds
..... MW UNR.IC i 07| & unreachable code

..... W OVFL.12 i 108 | 11 Linreachable check : overflow op...
..... & IRV.13 11112 & function retums an initialzed value
..... -j 114 | 18 WWarning : pointer may be owtside. ..
..... F IDP.22 i85 | & pointer is within its bounds

Each item in the list of checks has an acronym that identifies the type
of check and a number. For example, IDP.8, IDP stands for Illegal
Dereferenced Pointer.

For more information about different types of checks, see “Check
Descriptions”in the PolySpace Products for C Reference.

3 Click the check that you want to review.

The source code view displays the section of source code where this error
occurs.

8-37

8 Reviewing Verification Results

B example.c

92 int i, ¥p = array;

a3

94 for(i = 0; 1 «< 100; ii+])

a5 {

a5 no= 0;

97 i

95 i

99

1nn if{get bus= =status=()] > 0)

101 {

10z if(get oil pressure(] > 0]
103 !

104 Fp o= 5 /% Out of bounda */
10& 1

106 else

107 {

108 i++;

1049 3

110 1

4 Place your cursor over any colored check in the code.

A tooltip provides ranges for variables, operands, function parameters, and
return values. For more information on these tooltips, see “Using Range
Information in the Viewer” on page 8-70.

8-38

Reviewing Results in Expert Mode

Q2 int i, *p = array:

93

94 for{i = 0; i < 100; i++)

a5 {

=1 po=

a7 p++:

98 1

99

100 if(get bus ztatus() > 0]

101 ! & returned value of get_bus_status (int 32): fullrange [-231 . 231-1]
10z ILTOEC ULl _PLESSULEL] = o)

105 i

104 Fp o= 52 f* Out of bounds */
105 1

106 el=e

107 {

108 it

109 1

110 1

5 In the code, click the red check.

You see a message box that describes the error.

Bl example.Pointer_ArithmeticIDP.8

=101

in "example.c” line 104 column 10
SOUrce code :

[Error : pointer i=s outside itz bounds

dereference of wvariabl 'p' (pointer to int 32, size: 32 bita):

pointer is r

pointa to 4 bytes at o

may point te wvariable or field of wariable in: [Pointer Avithmeti

vl

8-39

8 Reviewing Verification Results

After you review a check, you can enter comments to describe the results of
your review. You can also mark the check as Reviewed to help track your
review progress. For more information, see “Tracking Review Progress” on
page 8-47.

Displaying the Call Sequence for a Check

You can display the call sequence that leads to the code associated with a
check. To see the call sequence for a check:

1 In the procedural entities window, expand the procedure containing the
check that you want to review.

2 Select the check that you want to review.

E
3 In the toolbar, click the error call graph button. ﬁ.

A window displays the call graph.

- o[x|
= {:} 100% -)' +

Example_Project - Call graph for check example.c Pointer_Arithmetic.IDP.8 &3

__polyspace_main.c example.c example.c example.c
main RTE Fointer_Arithmetic PS8

The call graph displays the code associated with the check.

8-40

Reviewing Results in Expert Mode

Displaying the Access Graph for Variables

You can display the access sequence for any variable that is read or written
in the code.

To see the access graph:

1 Select the Variables View.

2 Select the variable that you want to view.

3 In the Variables View toolbar, click the Show Access Graph button. i/

A window displays the access graph.

8-41

8 Reviewing Verification Results

Demo_C - Access graph for single_file_analysis.c w0 - | Ellﬂ
=] 4-[:_|o 100% -) i+

Demo_C - Access graph for single_file_analysis.c vl 54 |

single_file_analysis.c

Yy

v READ

main.c single_file_analysis.c single_file_analysis.c
main generic_validation functional_ranges

single_file_analysis.c

Y

VO WRITE

The access graph displays the read and write access for the variable.

4 Click any object in the graph to navigate to that function in the Procedural
entities view and Source code view.

Filtering Checks

You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters.

The default filter is User def.

To filter checks, select a filter from the filter menu.

8-42

Reviewing Results in Expert Mode

User def TI

Filter all
Alpha
Beta
Zamma
Undefined

Types of Filters

There are three types of filters:

¢ “Individual Filters” on page 8-43
® “Composite Filters” on page 8-44
® “Custom Filters” on page 8-44

Individual Filters

You can use individual filters to display or hide a given check category, such
as IDP. When a filter is enabled, you do not see that check category. For
example, when the IDP filter is enabled, you do not see IDP checks. When the
filter is disabled, you see IDP checks.

You can also filter by check color, can hide checks in nonexecutable
procedures, and can hide orange checks impacted by input data.

To enable or disable an individual filter, click the toggle button for that
filter on the toolbar.

Tip The tooltip for a filter button indicates to you what filter the button is
for and whether the filter is enabled or disabled.

Note When you filter a check category, you do see some red checks with
that category.

8-43

8 Reviewing Verification Results

8-44

Composite Filters

Composite filters combine individual filters, allowing you to show or hide
groups of checks.

Use This Filter... To...

Alpha Show all checks

Beta Hide NIV, NIVL, NIP, Scalar OVFL,
and Float OVFL checks

Gamma Show red and gray checks

User def Hide checks as defined in a custom
filter that you can modify

Custom Filters

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks, as shown in the following figure.

W E CALLs .
NS J o JIUserdEf ~| P assistant

I I NIV ZCAL I I I I NIV I FLOAT I
OBAL - ZDM) 2eq quEp | IOP | COROf IRM o SHE o gpo] NIP O qup 0 AERT o WTC - KNTC | WTL o UWR -

LoR

To modify the custom filter, see “Creating a Custom Filter” on page 8-44.

Creating a Custom Filter

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def.

To modify the custom filter:

1 From the composite filters menu, select User def.
2 Select Edit > Custom filters.

The Custom filter setup dialog box opens.

Reviewing Results in Expert Mode

Custom filter setup - PolySpace Viewer

Select the checks or colors to hide when the custom filter is set.

~Check Filters

[~ Zero Division Checks

¥ Mon-Initislized Local Variable Checks
I~ scalar Overfiow Checks
¥ Tlegal Dereferenced Pointer Checks

~Color Filters

I~ Gray Checks

[~ Orange Checks

[~ Green Checks

[Errors in non executable procedures

I~ Orange not containing additional information

~Variable Type Filters

I~ Non-Shared Variables

¥ Correctness Condition Checks
¥ Initizlized Returned Value Checks
[~ shift Amount out of Bounds or Left Operand of Left Shift Checks

Float f Scalar Filters

¥ Mon-Initislized Variable Checks
¥ Mon-Initislized Pointer Checks [Float Checks
[~ Float Overflow Checks [~ Scalar Checks
I~ User Assertion Checks

™ Unknown Mon-Termination of Call Checks
I~ Known Non-Termination of Call Checks
[Mon-Termination of Loop Checks

I~ Unreachable Code Checks

[value On Assigned (only displayed, not counted)

Ok

_ | [=

3 Clear the filters for the checks that you want to display. For example, if
you clear the Out of Bound Array Index Checks box, you see the OBAI
checks.

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.

5 Click OK to apply the changes and close the dialog box.

PolySpace software saves the custom filter definition in the Viewer
preferences.

8-45

8 Reviewing Verification Results

8-46

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

Tracking Review Progress

Tracking Review Progress

In this section...

“Defining Custom Acronyms ” on page 8-49

“Checking Coding Review Progress ” on page 8-47

“Reviewing and Commenting Checks ” on page 8-48

“Tracking Reviewed Checks in Procedural Entities View” on page 8-51

Checking Coding Review Progress

When you select a check in either Assistant or Expert mode, the Coding review
progress view (upper-left part of the Viewer window), displays statistics about

the review progress for that category and severity of error.

Coding review progress Count | Progress :
finum IDP reviewed / num IDP to review (Red) |0/1]
linum reviewed | num to review (Red) 0,5]

Software reliability indicator 113/230 49

.]

The Count column displays a ratio and the Progress column displays the

equivalent percentage.

The first row displays the ratio of reviewed checks to total checks that have
the same color and category of the current check. In this example, the first
row displays the ratio of reviewed red IDP checks to total red IDP errors in

the project.

The second row displays the ratio of reviewed checks to total checks that have
the color of the current check. In this example, this is the ratio of red errors

reviewed to total red errors in the project.

The third row displays the ratio of the number of green checks to the total
number of checks, providing an indicator of the reliability of the software.

8-47

8 Reviewing Verification Results

When you select the Reviewed checkbox for the check, the software updates
the ratios of errors reviewed to total errors in the Coding review progress
part of the window.

Coding review progress Count | Progress

finum IDP reviewed / num IDP to review (Red) |1/1 100
(inum reviewed / num to review (Red) 1/5 20
Software reliability indicator 113/230 45

Reviewing and Commenting Checks

When reviewing checks in either Assistant or Expert mode, you can mark
checks Reviewed, and enter comments to describe the results of your review.
This helps you track the progress of your review and avoid reviewing the
same check twice.

To reviewed and comment a check:

1 Select the check that you want to review.

The Selected check view (upper-right part of the Viewer window) displays
information about the current check.

example.c [Painter_Arithmetic / line 104 / column 10

*p o= 5; /% Out of bounds */
W [now =] =l & |Fix now

rror : polinter is outside its bounds

dereference of variasble 'p' (pointer teo int 32, size: 32 bits):
pointer is not null
points to 4 bytes at offset 400 in allocated buffer of 400 bytes
may point to variable or field of veriable in: {Pointer Arithmeticiarray]

2 After you review the check, select an acronym to describe the check in the
Predefined acronyms menu:

8-48

Tracking Review Progress

* NOW - Bug to fix now.

® NXT - Bug to fix in Next Release
* ROB — Robustness Issue

® DEF — Defensive Code

e MIN — Minor quality issue

e OTH - Other

Note You can also define your own acronyms. See “Defining Custom

Acronyms ” on page 8-49.

3 In the comment box, enter additional information about the check.

4 Select the check box to indicate that you have reviewed this check.

The software updates the ratios of errors reviewed to total errors in the

Coding review progress view of the Viewer window.

Coding review progress Count | Progress
finum IDP reviewed / num IDP to review (Red) |1/1 100
linum reviewed |/ num to review (Red) 1/5 20
Software reliability indicator 113/230 449

Defining Custom Acronyms

In addition to the Predefined Acronyms for reviewing checks, you can define
your own acronyms. Once you define an acronym, you can select it from the
user-defined acronym menu in the Selected check view.

To define custom acronyms:

1 Select Edit > Preferences.

2 Select the Acronyms tab.

8-49

8 Reviewing Verification Results

Preferences PolySpace Viewer

Tools Menu | Toolbars optionsl Miscellaneous Acronyms | Assistant oonﬁgurationl Character enoodingl

rPredefined Acronyms

Acronym

Description

MOW

Bug to be Fixed Mow

MXT

Bug to be Fixed in Next Release

ROB

Robustness Issue

DEF

Defensive Code

MIN

Minor Quality Issue

OTH

Cther

~User Defined Acronyms.

MAI - Mot an Issue

MAI - Mot an Issue

Remove |

Add |

oK Apply

Cancel |

3 Enter your new acronym at the bottom of the dialog box, then click Add.

The new acronym appears in the User Defined Acronyms list.

4 Click OK to save your changes and close the dialog box.

8-50

Tracking Review Progress

When reviewing checks, you can select the new acronym from the user-defined

acronyms menu in the Selected check view.

example.c [Recursion [line 142 / column 15

advance

= 1.0L

(float) {*depth) r

/* potential division by zero */

W Jorn =][Nal-Netan .. =] B

Value of depth cannot| be negative.

COrange may be caused by the stubbed function random int in exemple.c line 152

Tracking Reviewed Checks in Procedural Entities

View

The Procedural entities view in the Viewer displays which checks you have

reviewed and the predefined acronym you used to describe each check.

I Procedural entites | 4 | 2] | -|Line| Cal| = Details Reviewed | Acronym
@ Example_Project 5 |44 - 91 r
B]-example. 4 19 &R ample.c |_
- 4| 37 | 12 | &7 |examplec -
8- Mon_Infinit=_Loop £ | 66 100 [exeample.c |_
(- Pointer_Arithmetic Z B2 | 12 | 90 |example.c |-
..... W OVFLZ 34 | 23 loperation [+] on scal.. |_
..... F IDP.2 9% | 6 pointar is within its b.. -
..... IR 00| & function returns. an i... -
..... & IRV.T 0z 5 function retuns an i... |-

..... ? - 104 | 10 Error : pointer is out... ¥ |How

..... MW UNR.IC Wr| & unreschable code r
..... W OvFL.zZ 108 Unrzachable check ... I_
..... & IR 12| & function returns an i... |-
..... ? 114 | 18 VWarning : pointer m... r-
..... F IDP.22 18| & pointer is within its b... |_

8-51

8 Reviewing Verification Results

8-52

Tip If you do not see the Reviewed column, resize the Procedural entities
view to display the column. If it does not appear, right click the Procedural
entities column heading and select Reviewed.

You can select the Reviewed check box to mark a check as reviewed.
Selecting this check box also automatically:

® Selects the check box for that check in the current check view (upper-right
part of the window).

¢ Updates the counts in the coding review progress view (upper-left part
of the window).

Importing and Exporting Review Comments

Importing and Exporting Review Comments

In this section...

“Reusing Review Comments” on page 8-53
“Exporting Review Comments to Other Verification Results” on page 8-54
“Importing Review Comments from Previous Verifications” on page 8-54

“Viewing Checks and Comments Report” on page 8-55

Reusing Review Comments

After you have reviewed verification results on a module, you can reuse your
review comments with subsequent verifications of the same module. This
allows you to avoid reviewing the same check twice, or to compare results
over time.

The PolySpace Viewer allows you to either:

¢ Export review comments from the current results to another set of results.
¢ Import review comments from another set of results into the current

results.

You can also generate a report that compares the source code and verification
results from two verifications, and highlights differences in the results.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current
code. Open the Import/Export Report to see changes that affect your review
comments.

8-53

8 Reviewing Verification Results

8-54

Exporting Review Comments to Other Verification
Results

After you have reviewed verification results, you can export your review
comments for use with other verifications of the same module, allowing you to
avoid reviewing the same check twice.

Caution The comments you export replace any existing comments in the
selected results.

To export review comments to other verification results:
1 Select File > Export checks and comments.

2 Navigate to the folder containing the other results file.
3 Select the results (.RTE) file, then click Open.

The review comments from the current results are exported into the
selected results.

Note If the code has changed between the two verifications, the exported
comments may not be applicable to the other results. For example, the
justification for an orange check may no longer be relevant to the current code.

Importing Review Comments from Previous
Verifications

If you have previously reviewed verification results for a module and saved
your comments, you can import those comments into the current verification,
allowing you to avoid reviewing the same check twice.

Caution The comments you import replace any existing comments in the
current results.

Importing and Exporting Review Comments

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.
2 Select File > Import checks and comments.

3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Once you import checks and comments, the go to next check 4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check i icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

Viewing Checks and Comments Report

Importing review comments from a previous verification can be extremely
useful, since it allows you to avoid reviewing checks twice, and to compare
verification results over time.

However, if your code has changed since the previous verification, or if you
have upgraded to a new version of the software, the imported comments may
not be applicable to your current results. For example, the color of a check
may have changed, or the justification for an orange check may no longer be
relevant to the current code.

The Import/Export checks and comments report allows you to compare the

source code and verification results from a previous verification to the current
verification, and highlights differences in the results.

8-55

8 Reviewing Verification Results

To view the Import/Export checks and comments report:

1 Open your most recent verification results in the Viewer.

2 Select File > Import checks and comments.

3 Select the results ((RTE) file from your previous verification, then click
Open.

The review comments from the previous results are imported into the
current results.

4 Select File > Open Import/Export Report.

The Import/Export checks and comments report opens, highlighting

differences in the two results, such as unmatched lines and changes to the

color of checks.

':m

The: tashies beedowy containg a kst of chedis: where:

= The check. coler has changed. In this case the comment has been imported, but the reviewed flag vl be urmet,
» That ghetsck i i longer found im Bt new codie. Thi review informa bon has rot beer mported.

Plesss note that S mported or exported ustScations may rof be fully applicabls in She conbext of the new resulSs a2 & conseguence of
wode charges of PolySpace Verifier parmeter charges.

3

| Fle Furcton g] - L., | Com,
e _the_analyss.c genenc_valcsbon L, 18 MIVL pOreeck oolor Fas: changed from Green o Gray W e
sngie_fle_analyss.c jpenenic_valdation 133, SRV _iCheck color has changed from Green o Gray | [+ 3
E\m__fl_g_mdmc ey _speesd LY 17OV ek color Fas changed from Orange o Green |] s
EE_!’I_:_MMC ey _speed L1 B4 OV Cheeck color has changed from Srange o Green |] =3
mngie_fle_snalyss. o resst Semperstoe & 10ORAT Check oolor Fas changed from Orange to Bed b [4
ntalsters.c refm_oode %5 L1/OVPL Cheeck aokor P changed from Orange [Green |] DEF o
vl ors, C th_ﬂm:l..l'amn & 1OV Check oolor Fas changed from Crange to Green |] DER =
vialnasors dlwe__ﬂrrp..l'amn A OV Check oolor Fas changed from Crange to Green |] DER =
mialsasors . degres_rompuAaton | &8 BOVEL Check oolor has changed from CSrange o Green | | DEF =3
Exampie.c Recurson 141] 1MV Check color Fuas changed from Grange t Green |] MIN =)
T Racurson 141 1TOWEL Cheeck oolor Fas: changed from Orange o Green | [+ MIN =]
AT Racurson 143 1500 ek color Fas: changed from Crange o Green |]| MIN 2]
Eamphe C Bosare_Boot 153 1000 Sheeck color Fas changed from Srange o Gray ||| MIN =]
Ao C oqsare_Boot 155 1HIRY Sheck color has changed from Green o Gray | v =]
AT . Faon_infirite_Loop T4 11OV Cheeck color Fas: changed from Orange o Green | [MIN =]
xampie. Junneachable Code | 213) 1YMIVL (Cheeck oolor Fas: changed From Green o Gray = =]

bl

If the color of a check changes, the previous review comments are imported,

but the check is not marked as reviewed.

8-56

Importing and Exporting Review Comments

If a check no longer appears in the code, the report highlights the change, but
the software does not import any comments on the check.

8-57

8 Reviewing Verification Results

Generating Reports of Verification Results

In this section...

“PolySpace Report Generator Overview” on page 8-58

“Generating Verification Reports” on page 8-59

“Running the Report Generator from the Command Line” on page 8-61
“Automatically Generating Verification Reports” on page 8-62

“Generating Excel Reports” on page 8-63

PolySpace Report Generator Overview

The PolySpace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The PolySpace Report Generator provides the following report templates:

¢ Coding Rules Report — Provides information about compliance with
MISRA-C Coding Rules, as well as PolySpace configuration settings for
the verification.

¢ Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
PolySpace configuration settings for the verification. Detailed results are
sorted by type of check (Proven Run-Time Violations, Proven Unreachable
Code Branches, Unreachable Functions, and Unproven Run-Time Checks).

¢ Developer Review Report — Provides the same information as the
Developer Report, but reviewed results are sorted by review acronym
(NOW, NXT, ROB, DEF, MIN, OTH) and untagged checks are sorted by

file location.

¢ Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

¢ Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and PolySpace configuration settings for
the verification.

8-58

Generating Reports of Verification Results

The PolySpace Report Generator allows you to generate verification reports in
the following formats:

e HTML

e PDF

e RTF

DOC (Microsoft® Word)
e XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

Generating Verification Reports

You can generate reports for any verification results using the PolySpace
Report Generator.

To generate a verification report:

1 In the Viewer, open your verification results.
2 Select Reports > Run Report.

The Run Report dialog box opens.

8-59

8 Reviewing Verification Results

x

~Select Report Template

C:\PalySpace\PalySpace_Common'\ReportGenerator templates\CodingRules. rpt

mon\R.eportGenerator templates'D
\PalySpace\PolySpace_Common\RepartGeneratoritemplates\DeveloperReview. rpt
Ci\PalySpace\PolySpace_Common\ReportGenerator \templates \Developer_WithGreenChecks.rpt
C:\PalySpace\PaolySpace_Common'\ReportGenerator \templates \Quality rot

Erowse... |

—Select Report Format

[T Generate a single report induding all unit results

Qutput folder IC:'PDIySpacE'pulyspaceJ:uroject'nresultshPDIySpace-Du:u: |

Qutput format IF‘DF VI

Run Report | Cancel

3 In the Select Report Template section, select the type of report that you
want to run.

4 If your results are part of a unit-by-unit verification, you can generate
a report for the current unit results, or for the entire project. Select
Generate a single report including all unit results to combine all
unit results in the report.

5 Select the Output folder in which to save the report.
6 Select the Output format for the report.
7 Click Run Report.

The software creates the specified report.

8-60

Generating Reports of Verification Results

Note If you generate an RTF format report on a Linux system, the
software does not open the report at the end of the generation process.

Running the Report Generator from the Command
Line

You can also run the Report Generator, with options, from the command
line, for example:

C:\>\PolySpace\PolySpace_Common\ReportGenerator\wbin\report-generator

-template path -format type -results-dir folder_paths

For information about the available options, see the following sections.

-template path
Specify the path to a valid Report Generator template file, for example,

C:\PolySpace\PolySpace_Common\ReportGenerator\templates\Developer.rpt

Other supplied templates are CodingRules.rpt,

Developer WithGreenChecks.rpt, DeveloperReview.rpt, and Quality.rpt.

-format type

Specify the format type of the report. Use HTML, PDF, RTF, WORD, or XML. The
default is RTF.

~help or -h

Displays help information.

-noview
The software does not open the report at the end of the generation process.

8-61

8 Reviewing Verification Results

8-62

Note If you use a Linux system and want to run the Report Generator from
the command line with the -format RTF option, then you must also specify
the -noview option.

-output-name filename
Specify the filename for the report generated.

-results-dir folder_paths
Specify the paths to the folders that contain your verification results.

You can generate a single report for multiple verifications by specifying
folder_paths as follows:

"folder1, folder2, folder3,..., folderN"

where folder1, folder2, ... are the file paths to the folders that contain
the results of your verifications (normal or unit-by-unit). For example,

"C:\Results1,C:\Recent\results,C:\01d"

If you do not specify a folder path, the software uses verification results from
the current folder.

Automatically Generating Verification Reports

You can specify that PolySpace software automatically generate reports for
each verification using an option in the Launcher .

To automatically generate reports for each verification:

1 In the Launcher, open your project.

2 In the Analysis options section of the Launcher window, expand General.
You see the General options.

3 Select Report Generation.

Generating Reports of Verification Results

4 Select the Report template name.
5 Select the Output format for the report.

6 Save your project.

Generating Excel Reports
You can also generate Microsoft Excel® reports of verification results.

Note Excel reports do not use the PolySpace Report Generator.

To generate an Excel report of your verification results:

1 In your results folder, navigate to the PolySpace-Doc folder. For
example:polypace_project\results\PolySpace-Doc.

The folder should have the following files:

Example_Project_Call_Tree.txt
Example_Project_RTE_View.txt
Example_Project_Variable_View.txt

Example Project-NON-SCALAR-TABLE-APPENDIX.ps
PolySpace_Macros.xl1s

The first three files correspond to the call tree, RTE, and variable views
in the PolySpace Viewer window.

2 Open the macros file PolySpace Macros.xls.
You see a security warning dialog box.
3 Click Enable Macros.

A spreadsheet opens. The top part of the spreadsheet looks like the
following figure.

8-63

8 Reviewing Verification Results

8-64

apply filkers? ——————— Generate checks by file?
& Mo filters & yes
" Beta filters ho

Hal n | Yse this button to create the complete synthesis in one file.
=elect the RTE expoart view and a file in which to save results.
If the other views are in the same directory as the RTE wiew
then they will automatically be incorporated into the same file.

Generate Poly=Space Results Synthesis

Hel n

4 Specify the report options that you want, then click Generate PolySpace

Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into
one report.

The Where is the PolySpace RTE View text file dialog box opens.

5 In Look in, navigate to the PolySpace-Doc folder in your results folder.

For example:polypace project\results\PolySpace-Doc.

6 Select Project RTE View.txt.

7 Click Open to close the dialog box.

The Where should I save the analysis file? dialog box opens.

8 Keep the default file name and file type.

9 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This
spreadsheet has several worksheets.

Generating Reports of Verification Results

:I Example_Project-Synthesis.xls

}||

Call Graph of ll tree

all tree
__poly=space_main.main
| - » ezample.RTE
| | - » example.Close_To Zero
||] » pet_stubs 0. random_ float
||] » pst_stubs 0. random_ float
|] » pst_stubs 0. .random_int
| | > exanple. Hon_Infinite Loop
| | - » ezxample.Pointer Arithmetic
| 1 | » pet_=stubs_0.g=et_bus =status
||] » exanple.get_oil pressure
||] » pst_stubs 0.get_bus status
| | - » example.Recursion_caller
| 1 | » pet_=stub=s_0.random_int
| | | - » ezample.Recursion
| | | | =% RecursiwveCall to exanple. Recursion:
||] » pet_stubs 0. .randomn_int
| | | - » example.Recursion

Already displaved abowve

» p=t_=tub=s 0.random_int
» example . Square_FRoot
» pet_=tub=s 0.random_float
— » example.Sguare_Root_conwv

» TeEtern.sgrt
» example . Unreachable Code
» pet_=tub=s 0.random_int

| » pet_stub=s_0.random_int
b [Application Call Tree / Shared Globals 4 Global Data Dictionary £ Checks by file

|
|
|] » Textern.cos
|
|

PR TR Y AU Y S U Y Y) R R Ry ey PR PR P) Y g

10 Select the Check Synthesis tab to view the worksheet showing statistics
by check category.

8-65

8 Reviewing Verification Results

B Example_Project-Synthesis.xls

&, B C|ID|E|F

1 RTE Statistics

2 | Check category Check detail R O Gy
3 |0BAI Out of Baunds Array Index 000
4 MWL Uninitialized Local Variable 012
5 |IDF llegal Dereference of Pointer (1 |1 |0
B [MIP Lninitialized Paointer 0o
7 M Lninitialized Yariable 0o
a8 |1 Initialized Yalue Returned 0o
g |COR Other Correctness Conditions 0 0 0
10 |ASET User Asgertion Failure 010
11 | PO FPower Must Be Positive 000
12 [Z0% Division by Zero 010
13 | SHF Shift Amount YYithin Bounds 0o
14 |CWFL Creerflow o2 \3
15 |LINFL Lnderfl o ono|3
16 |LIOWFL Underflow or Cverflow 030
17 |EXCP Arithrmetic Exceptions 000
18 |MTC Mon Termination of Call 300
19 |k-NTC Known Mon Termination of Call /0 0 0
20 |MTL Mon Termination of Loaop 000
21 |LUMRE Unreachable Code 0o
22 | LIMP Uncalled Procedure 0o
23 |IPT Inspection Point 000
24 |OTH other checks 0o
25 |ERC Exception handling 0on

8-66

Using PolySpace® Results

Using PolySpace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 8-67

“Red Checks Where Gray Checks were Expected” on page 8-68
“Using Range Information in the Viewer” on page 8-70
“Using Pointer Information in the Viewer” on page 8-76

“Why Review Dead Code Checks” on page 8-79

“Reviewing Orange Checks” on page 8-81

“Integration Bug Tracking” on page 8-81

“How to Find Bugs in Unprotected Shared Data” on page 8-82
“Dataflow Verification” on page 8-83

“Data and Coding Rules” on page 8-83

“Potential Side Effect of a Red Error” on page 8-84
“Relationships Between Variables” on page 8-85

“Two Distinct Colors in a while/for Statement” on page 8-86

Review Runtime Errors: Fix Red Errors

All Runtime Errors highlighted by PolySpace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”

might be performed to give a result of -128.

This result is mathematically incorrect, and could have serious consequences
if, for example, the computation represents the altitude of a plane.

8-67

8 Reviewing Verification Results

8-68

By default, PolySpace verification does not make assumptions about the way
you use a variable. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

PolySpace verification identifies two kinds of red checks:

® Red errors which are compiler-dependant in a specific way. A PolySpace
option may be used to allow particular compiler specific behavior . An
example of a PolySpace option to permit compiler specific behavior is
the option to force “IN/OUT” ADA function parameters to be initialized.
Examples in C include options to deal with constant overflows, shift
operation on negative values, and so on.

® You must fix all other red errors. They are bugs.

Most of the bugs you find are easy to correct once the software identifies
them. PolySpace verification identifies bugs regardless of their consequence,
or how difficult they may be to correct.

Red Checks Where Gray Checks were Expected

By default, PolySpace continues verification when it finds a red error. This
1s used to deal with two primary circumstances:

® A red error appears in code which was expected to be dead code.

® A red error appears which was expected, but the verification is required
to continue.

PolySpace performs an upper approximation of variables. Consequently, it
may be true that PolySpace verifies a particular branch of code as though
it was accessible, despite the fact that it could never be reached during
“real life” execution. In the example below, there is an attempt to compare
elements in an array, and PolySpace is not able to conclude that the branch
was unreachable. PolySpace may conclude that an error is present in a line
of code, even when that code cannot be reached.

Consider the figure below.

Using PolySpace® Results

As a result of imprecision, each color shown can be approximated by a color
immediately above it in the grid. It is clear that green or red checks can be
approximated by orange ones, but the approximation of gray checks is less

obvious.

During PolySpace verification, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Gray code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

* by an empty superset;

* by a nonempty super set, members of which may generate checks of any
color.

And hence PolySpace cannot be guaranteed to find all dead code in a
verification.

However, there is no problem in having gray checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example:

if (condition) then action_producing_a_red;

8-69

8 Reviewing Verification Results

After the "if" statement, the only way execution can continue is if the condition
1s false; otherwise a red check would be produced. Therefore, after this
branch the condition is always false. For that reason, the code verification
continues, even with a specific error. Remember that this propagates values
throughout your application. None of the execution paths leading to a
run-time error will continue after the error and if the red check is a real
problem rather than an approximation of a gray check, then the verification
will not be representative of how the code will behave when the red error
has been addressed.

It is applicable on the current example:

1 int a[] = { 1,2,8,4,5,7,8,9,10 };

2 void main(void)

3 {

4 int x=0;

5 int tmp;

6 if (a[5] > a[6])

7 tmp =1 /x; // RED ERROR [scalar division by zero] in gray code
8}

Using Range Information in the Viewer

* “Viewing Range Information” on page 8-70
¢ “Interpreting Range Information” on page 8-71

¢ “Diagnosing Errors with Range Information” on page 8-73

Viewing Range Information

You can see range information associated with variables and operators within
the source code view. Place your cursor over an operator or variable. A tooltip
message displays the range information, if it is available.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

8-70

Using PolySpace® Results

If a line of code is entirely the same color, selecting (clicking) the line opens the
Expanded Source Code window. Place your cursor over the required operator
or variable in this window to view range information. In addition, you can
select the line in the Expanded Source Code window to display error or
warning messages (along with range information) in the selected check view.

In the source code view, if a line of code contains different colored checks, then
selecting a check displays the error or warning message along with range
information in the selected check view.

Note Computing range information for reads and operators may take a
long time. You can reduce verification time by limiting the amount of range
information displayed in verification results. See “-less-range-information”
in the PolySpace Products for C Reference Guide.

Interpreting Range Information

The software uses the following syntax to display range information of
variables:

name (data_type) : [min1 .. max1] or [min2 .. max2] or [min3 .. max3] or exact value

In the following example,

30 i
31 int temp;

3z _P_n:_nI%ETI..F_v_e_J: = -1l0000;
33 - - ; s ,_
1a rTE L assignment of variable 'PowerLevel (int 32): -10000 |

35
the tooltip message indicates the variable PowerLevel is a 32-bit integer
with the value —10000.

In the next example,

8-71

8 Reviewing Verification Results

140
141 Fdepth = *depth + 1;

143

14z adgance = 1.0f£/(float) (*depth); /% potential division by zero */
144 %5

assignment of variable ‘advance' (float 32): [-1.0001 .. -4.6566E "] or [L.9999E .. 3.3334E 1]

the tooltip message indicates that the variable advance is a 32-bit float that
lies between either —1.0001 and —4.6566E-10 or 1.9999E-2 and 3.3334E-1

The tooltip message also indicates whether the variable occupies the full
range:

37

38 tewp = read om, bus();
39 switch(ten
a0 E—p] returned value of read_on_bus {int 32): full-range [-231 " 231-1] |

The tooltip message indicates that the returned value of the function
read_on_bus is a 32-bit integer that occupies the full range of the data type,
-2147483648 to 21474836417.

With operators, the software displays associated information. Consider the
following example:

50

51 atatic s3z new speed(232 in, =28 ex_speed, ud c_speed)
Lz {

53 return [in 9+ ((232)ex_speed + (532)c_speed) S 2);
34 ' operator on type int 32

55 left: [-1701.. 3278]

56 static char re| right: 3 k3

57 1 result: [-189 .. 364] o

The tooltip message for the division operator / indicates that the:

® Operation is performed on 32-bit integers
® Dividend (left) is a value between —1701 and 3276
¢ Divisor (right) is an exact value, 9

® Quotient (result) lies between —189 and 364

8-72

Using PolySpace® Results

Note You can run a passO (Software Safety Analysis level 0)
verification to produce results quickly. See “-from verification-phase” and “-to
verification-phase” in the PolySpace Products for C Reference Guide.
However, with a passO0 verification, the software generates range information
that is either a constant or full-range for the data type of the expression.

Diagnosing Errors with Range Information

You can use range information to diagnose errors. Consider the function
reset_temperature() in the following example:

8-73

8 Reviewing Verification Results

PolySpace Viewer - C:\CC-R2009b-V1\Examples\Demo C\RTE_px_ 02 Demo_C_LAST RESULTS.rte

File Edit Reports Windows Help

[ofa|«

sﬂﬂ.@ i .J-g-n-smx]-g-ﬂﬁ]m-@)ﬁslmml

J| X oo o TR L omm zow o MIYSERL e cor o me o osee o MEY wie THERT pmRT o WTC o RNTC. NTL - unR - wom
T T count [Pr...[] MNe check currently selected
Mo check selected nja__ |nja
num reviewed / num to review (n/a) n/a nfa
Isoftware reliability indicator nfa nfa - @I
I Procedural entities W[7| | Lne|..| 2 gl
|= = Noresd | Moot
- 4 1 90 jexsmple.c |5 pemo_c 2
1 5 jinitizlizatic initislisations.am B 2
2 1 % manc | liritten by A || g initisisations.cument_data z 2
2 1 91 single_file — p | inisisstions first_paioss o 2
1 0 |single_file F]-initizlizations, s2cond_paioad ° !
2| 5| 25 | 57|71 single_ie | Written by task | | G- nitsiiestions tsp 2 B
2 24 | 5T |T1 isingle_file [——, [[p | E-simabe_tie_anstysis.output_v1 o 2
2 25 57|71 single_file []-single_file_snalysis.output_ve ! ®
2 | 37 |12 |100jsingle_file |[Potentially Written by [-single_fie_anshysis.output_vT 3 z
40 | 7| |functonn T o | single_fie_ansiysie ssved_vsiss o B
4 |7 Function [f]--single_file_anatysis.v0 1 2
44 7| frunctonn f7--single_fie_snatysis.u1 3 2 =
FERRET function 1 4 | _’I_I
% |7 function 1 =
45 T function r
4|z 84 | 3|97 single_file
51| 11 |100/single_file
5| 56 |12 |100jsingle_fike
68 |12 [Error : am:
80 (13| |locsl varis
80 [13| |sealervar || 57 {
80 |12 isealar var || 58 int array[Z55-(54 * BEIN w3)]:
80 [18| |scslarvar || 59
8 |18 lsealar var || 60 return array[in w3-255] = 0;
137 | 11| 0 lsingle_sie || 81 i
3 1 90 fasksre || 62
2 1 o1 tasksze || B3
e o8| copses || 64 6 gEneric validavion(ss sxtrspolated speed, us computed speed)
65 {
4 | | EE R =

Demo_C

Source file: single_file_analysis.c

single_file_analysis.c Line: 56 Column: 12

Clicking the red check, OBAI.O in the Procedural entities view or [on line
60 in the source code view, displays an error message and range information
in the selected check view:

8-74

Using PolySpace® Results

1 single_file_analysis.c [reset_temperature / line 60 / column 12

-y

+ return array[in v3-255] = 0;

ol I HE

[Error : array index is outside its bounds : [0..38]
array size: 39
array index walue: [-255 .. -39]

The error message shows that the array size is 39, but the array index is

negative, lying between —255 and —39.

Placing the cursor over in_v3 in the source code view shows the following:

57 {
La int array[255-(54 ¥ BIN w3)]:
Lo

&l return array[in wi-255] = 0;

&1 } variable 'in_v3' {unsigned int 8): [0 .. 218]

&2 conversion from unsigned int & to unsigned int 32
a3 right: [0.. 216]

B S8 generic wal{ result: [0.. 216]

65 I conversion fram unsigned int 32 to int 32

right: [0 .. 218]

== f#*#***t#***' resmt m,,21ﬂ

Patal LR, O,

ted speed)

FaEEETRETTEES

+

Although in_v3 is green (as a local variable), it is in the range 0 - 216. This
results in a negative index range. Moving the cursor to the beginning of the
function reveals the cause of the red check: the input argument is between 0

and 216:

55

57 {
1 int array[255-(5d * BIN +3)]:

56 static char reset_temperature (ud 5;.{%1&_?@3

parameter in_v3 (unsigned int 8): [0 .. 215] |

a9

&l returh array[in wi-255] = 0:
6l 1
62

8-75

8 Reviewing Verification Results

8-76

Using Pointer Information in the Viewer

Within the source code view, you can see information about pointers to
variables or functions. If you place the cursor over a pointer, dereference
character ([, ->, *), function call, or function declaration, a tooltip message
displays pointer information. For example:

10z if(get 0il pressure() > 0)

103 {

104 = 5; /% Out of bounds */

103 + 1/ dereference of variable 'p' (pointer to int 32, size: 32 bits):

106 elag pointer is not null

107 i points to 4 bytes at offset 400 in allocated buffer of 400 bytes

10a may point to variable or field of variable in: {Pointer_Arithmetic:array}

109)
110 1

If you click the pointer check (IDP, NIP), dereference character, function call,
or function declaration, the software also displays the pointer information
in the selected check view.

example.c / Pointer_Arithmetic / line 104 / column 10

+ *p = 5; /* Out of bounds */
] |
Error : pointer is outside its bounds

dereference of wvariable 'p'" (pointer to int 32, size: 32 bits):
pointer iz not null
points to 4 bytes at offset 400 in allocated buffer of 400 bytes
may point to variable or field of variable in: {Pointer_Rrithmetic:array}

For a pointer to a variable, on separate lines in the tooltip message, the
software displays:
¢ The pointer name, data type of the variable, and size of the data type in bits.

e A comment that indicates whether the pointer is null, is not null, or
may be null. See also “Messages on Dereferences” on page 8-78.

¢ The number of bytes that the pointer accesses, the offset position of the
pointer in the allocated buffer, and the size of this buffer in bytes.

® A comment that indicates whether the pointer may point to dynamically
allocated memory.

¢ The names of the variables at which the pointer may point. See also
“Variables in Structures” on page 8-79.

Using PolySpace® Results

Note Tooltip messages display only lines that contain meaningful
information. For example, when a pointer is initialized by the main generator,
the tooltip does not display lines for offset and aliases.

For a pointer to a function, the software displays:

The pointer name.

® A comment that indicates whether the pointer is null, is not null,

or may be

null.

The names of the functions that the pointer may point to, and a comment
indicating whether the functions are well or badly typed (whether the
number or types of arguments in a function call are compatible with the
function definition).

Note Computing pointer information may take a long time. You

can disable the display of pointer information by selecting the option
no-pointer-information. See “-no-pointer-information” in the PolySpace
Products for C Reference Guide.

You can use pointer information when analyzing, for example, red and orange
IDP and NIP checks. In the following example, placing the cursor over the
orange check shows that offset position may lie outside the bounds of the
pointer.

11z
113
114
115
116
117
118
113
120

i = ger bus
if (1 »= 0)

i€ (0 2 1)

status()}

{plp-i) = 107}

dereference of expression (pointer to int 32, size: 32 bits):
pointer is not null
points to 4 bytes at offset [7 .. 400] in allocated buffer of 400 bytes

&6

B may point to variable or field of variable in: {Pointer_Arithmetic:array}

8-77

8 Reviewing Verification Results

8-78

Messages on Dereferences

Tooltip messages on dereferences give information about the expression that
is dereferenced.

Consider the following code:

int *p = (int*) malloc (sizeof(int) * 20);
p[10] = 03

In the verification results, the tooltip on “[” displays information about the
expression that is dereferenced.

23

24 int *p = {int*) walloc { sizeof{int) * Z0 j:

25 p[lo] = 0;

26 " dereference of expression (pointer to int 32, size: 32 bits):

27 1 pointer is not null

25 points to 4 bytes at offset 40 in allocated buffer of 80 bytes
g points to dynamically allocated memory

On p[10], the expression dereferenced is p + 10 * sizeof(int), so the
tooltip message displays the following:
® The dereferenced pointer is at offset 40.

Explanation: p has offset 0, so p+10 has offset 40 (10 * sizeof(int)).
® The dereferenced pointer is not null.

Explanation: p is null, but p+10 is not null (0+40 # 0).
The software reports an orange dereference check (IDP) on p[10] because

malloc may have put NULL into p. In that case, p + 10 * sizeof(int) is not
null, but it is not properly allocated.

Using PolySpace® Results

Variables in Structures

The information that the software displays for structure variables depends
on whether you specify the option -allow-ptr-arith-on-struct. See
“.allow-ptr-arith-on-struct” in the PolySpace Products for C Reference
Guide.

Consider the following code:

Struct { int x; int y; int z; } s ;
int *p = &s.y ;

If you do not specify the option (this is the default), then placing the cursor
over p produces the following information:

accessing 4 bytes at offset 0 in buffer of 4 bytes
This information conforms with ANSI C, which

¢ Requires that &s.y points only at the field y

® Does not allow pointer arithmetic for access to other fields, for example, z
If you specify the option -allow-ptr-arith-on-struct, you are allowed to
carry out pointer arithmetic using the addresses of structure fields. In this

case, placing the cursor over p produces the following information:

accessing 4 bytes at offset 4 in buffer of 12 bytes

Why Review Dead Code Checks

® “Functional Bugs in Gray Code” on page 8-79

e “Structural Coverage” on page 8-81

Functional Bugs in Gray Code

PolySpace verification finds different types of dead code. Common examples
include:

e Defensive code which is never reached.

¢ Dead code due to a particular configuration.

8-79

8 Reviewing Verification Results

8-80

e Libraries which are not used to their full extent in a particular context.
® Dead code resulting from bugs in the source code.

The causes of dead code listed in the following examples are taken from
critical applications of embedded software by PolySpace verification.

® A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

® Consider a line of code such as:
IF NOT a AND b OR ¢ AND d

Now consider how misplaced parentheses might influence how that line
behaves:

IF NOT (a AND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (a AND (b OR c) AND d)
® The test of variable inside a branch where the conditions are never met

® An unreachable “else” clause where the wrong variable is tested in the
“if” statement

® A variable that should be local to the file but instead is local to the function
* Wrong variable prototyping leading to a comparison which is always false

(say)

As 1s the case for red errors, the consequences of dead code and how much
time you must spend on it is unpredictable. For example, it can be:

* A one-week effort of functional testing on target, trying to build a scenario
going into that branch.

® A three-minute code review discovering the bug.
Again, as for red errors, PolySpace does not measure the impact of dead code.

The tool provides a list of dead code. A short code review enables you to
identify known dead code and uncover real bugs.

Using PolySpace® Results

Using PolySpaceshows that at least 30% of gray code reveals real bugs.

Structural Coverage

PolySpace software always performs upper approximations of all possible
executions. Therefore, if a line of code is shown in green, there is a possibility
that it is a dead portion of code. Because PolySpace verification makes an
upper approximation, it does not conclude that the code is dead, but it could
conclude that no run-time error is found.

PolySpace verification finds around 80% of dead code that the developer finds
by doing structural coverage.

Use PolySpace verification as a productivity aid in dead code detection. It
detects dead code which might take days of effort to find by any other means.

Reviewing Orange Checks

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

The number of orange checks you review is determined by several factors,
including:

¢ The stage of the development process

® Your quality objectives

There are also actions you can take to reduce the number of orange checks
in your results.

For information on managing orange checks in your results, see Chapter 9,
“Managing Orange Checks”.

Integration Bug Tracking

By default, you can achieve integration bug tracking by applying the
selective orange methodology to integrated code. Each error category reveals
integration bugs, depending on the coding rules that you choose for the project.

8-81

8 Reviewing Verification Results

8-82

For instance, consider a function that receives two unbounded integers. The
presence of an overflow can be checked only at integration phase because at
unit phase the first mathematical operation reveals an orange check.

Consider these two circumstances:

® When you carry out integration bug tracking in isolation, a selective
orange review highlights most integration bugs. A PolySpace verification is
performed integrating tasks.

® When you carry out integration bug tracking together with an exhaustive
orange review at unit phase, a PolySpace verification is performed on one
or more files.

In this second case, an exhaustive orange review already has been performed,
file by file. Therefore, at integration phase, assess only checks that have
turned from green to another color .

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This consequentially displays a green NIV check at the first read access to

a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks reveal integration bugs.

How to Find Bugs in Unprotected Shared Data
Based on the list of entry points in a multi-task application, PolySpace
verification identifies a list of shared data and provides some information
about each entry:

e The data type.

® A list of read and write access to the data through functions and entry
points.

® The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent access when one task

Using PolySpace® Results

can access it while another task is in the process of doing so. Consider all
the possible situations:

e A scenario which would lead to such a conflict for a particular variable;
then a bug exists and you must provide protection.

e No such scenarios; then one of the following explanations may apply:

= The compilation environment guarantees an atomic read/write access
on variables of type less than 1 or, 2 bytes. Therefore, all conflicts
concerning a particular variable type still guarantee the integrity of the
variables content. Be careful when you port the code.

The variable is protected by a critical section or a mutual temporal
exclusion. You may want to include this information in the PolySpace
launching parameters and reverify.

Consider checking whether variables are modified when they are supposed to
be constant. Use the variables dictionary.

Dataflow Verification

Data flow verification is often performed within certification processes —
typically in the avionic, aerospace, or transport markets.

This activity makes use of two features of PolySpace results, which are
available any time after the Control and Data Flow verification phase:
e (Call tree computation

® Dictionary containing read/write access to global variables. (You can also
use this to build a database listing for each procedure, for its parameters,
and for its variables.)

PolySpace software can help you to build these results by extracting
information from both the call tree and the dictionary.

Data and Coding Rules

Data rules are design rules which dictate how modules and files interact
with each other.

8-83

8 Reviewing Verification Results

Consider global variables. It is not always apparent which global variables
are produced by a given file, or which global variables are used by that file.
The excessive use of global variables can lead to design problems, such as:

¢ File APIs (or functions accessible from outside the file) with no procedure
parameters.

® The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and output values.

Potential Side Effect of a Red Error

When the software finds a red error, you can continue the verification but
proceed with caution. Consider this piece of code:

int *global_ptr; void other_function(void)
int variable_ it points_to;
{

void big_red(void)

{ if (condition==1)
int r;
int my_zero = 0; *global ptr = 12;
if (condition==1)

r=1/ my_zero; // red ZDV }

// hundreds of lines
global ptr = &variable_ it points_to;
other_function();

}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for verification,
and the propagation of the data ranges need several iterations (or integration

8-84

Using PolySpace® Results

levels) to be complete. You can observe that effect by examining the color of
the checks upon completion of each of those levels.

® PolySpace detects gray code which exists due to a terminal RTE which is
not be flagged in red until a subsequent integration level.
® PolySpace flags an NTC in red with the content in gray. This red NTC 1is

the result of an imprecision; it should be gray.

Suppose that an NTC is hard to understand at a given integration level
(level 4):

e If other red checks exist at level 4, fix them and restart the verification

e Otherwise, look through the results from each previous level to see whether
you can locate other red errors. If so, fix them and restart the verification

Relationships Between Variables

Abstract

A red error can hide a bug which occurred on previous lines.

%% filel.c %% %% file2.C %%

1 void f(int); 1 #include <math.h>
2 int read_an_input(void); 2

3 3 void f(int a)

4 int main(void) 4 {

5 { 5 int tmp;

6 int x,0ld_x; 6 tmp = sqrt(0-a);
7 7}

8 X = read_an_input();

9 old x = x;

10

11 if (x<0 || x>10)

12 return 0;

13

14 f(x);

15

16 x =1 / old x; // division is red

17

18 }

8-85

8 Reviewing Verification Results

8-86

Explanation 1

When old_x is assigned to x (file 1, line 9), PolySpace retains the following
information:

= x and old_x are equivalent to the full range of an integer: [-2"31 ;
2731-1].

= x and 0ld_x are equal.

After the if clause (file 1, line 11), X 1s equivalent to [0; 10]. Because x
and old_x are equal, 0ld_x is equivalent to [0;10] as well. Otherwise
the return statement is executed.

When X is passed to "f" (file 1, line 14), the only possible conclusion for
sqrt is that x=0. All other values lead to a run-time exception (file 2, line
6) tmp = sqrtt(0 a);.

A red error occurs (file 1, line 16) because x and 0ld_x are equal, therefore
old x = 0.

Explanation 2

Suppose that PolySpace exits immediately when encountering a run-time
error. Introduce a print statement that writes to the standard output after
the "f" procedure is called (file 1, line 14), to show the current value of x
and old_x.

The only way the program can reach the print statement is when X =
0. So, if X=0, 01ld_x must also have been assigned to 0, which makes the
division red.

Summary

PolySpace builds relationships between variables and propagates the
consequence of these relationships backwards and forwards.

Two Distinct Colors in a while/for Statement
Inside the condition of a loop, a check might be green then red.

Consider the following example.

Using PolySpace® Results

1 void main(void)

2 {

3 int tab[2] = { 1, 2 };

4 int index = 0;

5 while (tab[index]) { index--; }

// the colour of "array index within bounds" is
/] first green

// then red

6 }

In the Viewer, if you click the tab variable (line 5), you see:

Error : array index is outside its bounds : [0..1]

array index is within bounds : [0..1]

local variable is initialized (type: int 32)

Unreachable check : not initialized local variable error (type: int 32)

Now, visualize the C loop transformed into a label and a goto

if (not(tab[index]) goto end;

// first location of the check is green
loop_begin:

index = index-1;
if (tab[index]) goto loop_begin;

/] second location of the check is red
end:

In the example, the second color represents the second pass through the loop,
and you should investigate.

8-87

8 Reviewing Verification Results

8-88

Managing Orange Checks

¢ “Understanding Orange Checks” on page 9-2

¢ “Too Many Orange Checks?” on page 9-12

¢ “Reducing Orange Checks in Your Results” on page 9-14
¢ “Reviewing Orange Checks” on page 9-30

® “Automatically Testing Orange Code” on page 9-43

9 Managing Orange Checks

9-2

Understanding Orange Checks

In this section...

“What is an Orange Check?” on page 9-2
“Sources of Orange Checks” on page 9-6

What is an Orange Check?

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

PolySpace verification does not simply try to find bugs, it attempts to prove
the absence or existence of run time errors. Therefore, all code starts out as
unproven prior to verification. The verification then attempts to prove that
the code is either correct (green), is certain to fail (red), or is unreachable
(gray). Any remaining code stays unproven (orange).

Code often remains unproven in situations where some paths fail while others
succeed. For example, consider the following instruction:

X =1/ (X-Y);
Does a division-by-zero error occur?
The answer clearly depends on the values of X and Y. However, there are an

almost infinite number of possible values. Creating test cases for all possible
values is not practical.

Understanding Orange Checks

X =Y (Division by zero error)

x-+—— Actual states of operation
X X X/ (X-Y)
X (nearly infinite)

Although it is not possible to test every value for each variable, the target
computer and programming language provide limits on the possible values of
the variables. PolySpace verification uses these limits to compute a cloud of

points (upper-bounded convex polyhedron) that contains all possible states
for the variables.

Y% Convex polyhedron
containing all possible
states of

X/ (X-Y)

9 Managing Orange Checks

PolySpace verification than compares the data set represented by this
polyhedron to the error zone. If the two data sets intersect, the check is
orange.

Intersection means

X =Y (Division by zero error)

*— Operation: X/ (X-Y)

X

Graphical Representation of an Orange Check

Understanding Orange Checks

A true orange check represents a situation where some paths fail while
others succeed. However, because the data set used in the verification is an
approximation of actual values, an orange check may actually represent a
check of any other color, as shown below.

Y

Y

Red approximated by orange Gray approximated by orange

-
-

-
o

Green approximated by orange Any other situation (true orange)

PolySpace reports an orange check any time the two data sets intersect,
regardless of the actual values. Therefore, you may find orange checks that
represent bugs, while other orange checks represent code that is safe.

You can resolve some of these orange checks by increasing the precision of
your verification, or by adding execution context, but often you must review
the results to determine the source of an orange check.

9 Managing Orange Checks

9-6

Sources of Orange Checks

Orange checks can be separated into two categories:

® “Orange Checks Due to Code Issues” on page 9-6
® “Orange Checks Due to Tool Issues” on page 9-9

Orange Checks Due to Code Issues

Most orange checks are caused by issues in the code. These oranges may
represent real bugs, or could indicate theoretical issues that cannot actually
occur in your application.

Orange checks due to code issues can be caused by:

e “Potential Bug” on page 9-6

e “Data Set Issue” on page 9-7

* “Function Sequence” on page 9-8

Potential Bug. An orange check can reveal code which will fail in some

circumstances. These types of orange checks are called true orange, and often
represent real bugs.

For example, consider a function Recursion():

® Recursion() takes a parameter, increments it, then divides by it.

® This sequence of actions loops through an indirect recursive call to
Recursion_recurse().

If the initial value passed to Recursion() is negative, then the recursive
loop will at some point attempt a division by zero. Therefore, the division
operation causes an orange ZDV.

When an orange check indicates a potential bug, you can usually identify the
cause quickly. The range information provided in the viewer can help you
1dentify whether the orange represents a bug that should be fixed. See “Using
Range Information in the Viewer” on page 8-70.

Understanding Orange Checks

If the orange represents a situation that cannot actually occur (for example,
the initial value above cannot be negative), you have several options:

e Comment the orange check and ignore it.

® Modify the code to take constraints into account.

¢ Constrain the data ranges used in the verification using DRS (contextual

verification).

Data Set Issue. An orange check can result from a theoretical set of data
that cannot actually occur.

PolySpace verification uses an upper approximation of the data set, meaning
that it considers all combinations of input data rather than any particular
combination. Therefore, an orange check may result from a combination of
input values that is not possible at execution time.

For example, consider three variables X, Y, and Z:

e Each of these variables is defined as being between 1 and 1,000.

® The code computes X*Y*Z on a 16-bit data type.

® The result can potentially overflow, so it causes an orange OVFL.

When developing the code, you may know that the three variables cannot all

take the value 1,000 at the same time, but this information is not available to
the verification. Therefore, the multiplication is orange.

When an orange check is caused by a data set 1ssue, it is usually possible to
identify the cause quickly. The range information provided in the viewer can
help you identify whether the orange represents a bug that should be fixed.
See “Using Range Information in the Viewer” on page 8-70.

After identifying a data set issue, you have several options:

e Comment the orange check and ignore it.
® Modify the code to take data constraints into account.

® Constrain the data ranges that are verified using DRS (contextual
verification).

9-7

9 Managing Orange Checks

9-8

Function Sequence. An orange check can occur if the verification cannot
conclude whether a problem exists.

In some code, it is impossible to conclude whether an error exists without
additional information, such as the function sequence.

For example, consider a variable X, and two functions, Fland F2:

® F1 assigns X = 12,
e F2 divides a local variable by X.
® The automatically generated main (F0) initializes X to 0.

¢ The generated main then randomly calls the functions, similar to the
following:

If (random)
Call F1
Call F2

Else
Call F2
Call F1

A division by zero error is possible because F1 can be called before or after F2,
so the division causes an orange ZDV. The verification cannot determine if an
error will occur unless you define the call sequence.

Many inconclusive orange checks take some time to investigate, due to the
complexity of the code. When an orange check is caused by function sequence,
you have several options:

Provide manual stubs for some functions.

e Use -main-generator options to describe the function call sequence, or to
specify a function called before the main.

Write defensive code to prevent potential problems.

® Comment the orange check and ignore it.

Understanding Orange Checks

Orange Checks Due to Tool Issues
Some orange checks are caused by limitations of the verification process itself.

In these cases, the orange check is a false positive, because the code does not
contain an actual bug. However, these types of oranges may suggest design
issues with the code.

Orange checks due to tool issues can be caused by:

® “Code Complexity” on page 9-9
® “Basic Imprecision” on page 9-10

Code Complexity. An orange check can occur when the code structure is too
complicated to be verified by PolySpace software.

When code is extremely complex, the verification cannot conclude whether
a problem exists, and therefore reports an inconclusive orange check in the
results.

For example, consider a variable Computed_Speed.

* Computed_Speed is first copied into a signed integer (between -2731 and
2731-1).

® Computed_Speed is then copied into an unsigned integer (between 0 and
2731-1).

* Computed_Speed is next copied into a signed integer again.

¢ Finally, Computed_Speed is added to another variable.

PolySpace verification reports an orange OVFL on the addition.

This type of orange check is a false positive, because the scenario does not
cause a real bug. However, it does suggest that the code may be poorly
designed.

Orange checks caused by code complexity often take some time to investigate,

but generally share certain characteristics. Code complexity problems usually
result in multiple orange checks in the same module. These checks are often

9-9

9 Managing Orange Checks

9-10

related, and analysis identifies a single cause — perhaps a function or a
variable modified many times.

In these cases, you may want to recode to ensure there is no risk, depending
on the criticality of the function and the required speed of execution.

To limit the number of orange checks caused by code complexity, you can:

e Enforce coding rules during development

® Perform unit-by-unit verification to verify smaller sections of code.

Note The MathWorks recommends enforcing compliance with coding
standards to reduce code complexity. For more information, see Chapter
11, “MISRA Checker”.

Basic Imprecision. An orange check can be caused by imprecise
approximation of the data set used for verification.

Static verification uses approximations of software operations and data.
For certain code constructions, these approximations can lead to a loss of
precision, and therefore cause orange checks in the verification results.

For example, consider a variable X:

® Before the function call, X is defined as having the following values:
-5, -3, 8, or any value in range [10...20].
This means that 0 has been excluded from the set of possible values for X.

e However, due to optimization (especially at low precision levels), the
verification approximates X in the range [-5...20], instead of the previous
set of values.

® Therefore, calling the function x = 1/x causes an orange ZDV.

PolySpace verification is unable to prove the absence of a run-time error in
this case.

Understanding Orange Checks

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly. You need to review the code to
determine if there is an actual problem.

To limit the number of orange checks caused by basic imprecision, avoid code
constructions that cause imprecision.

For more information, see “Approximations Used During Verification”in the
PolySpace Products for C Reference.

9-11

9 Managing Orange Checks

9-12

Too Many Orange Checks?

In this section...

“Do I Have Too Many Orange Checks?” on page 9-12
“How to Manage Orange Checks” on page 9-13

Do | Have Too Many Orange Checks?

If the goal of code verification is to prove the absence of run time errors, you
may be concerned by the number of orange checks (unproven code) in your
results.

In reality, asking “Do I have too many orange checks?” is not the right
question. There is not an ideal number of orange checks that applies for
all applications, not even zero. Whether you have too many orange checks
depends on:

¢ Development Stage — Early in the development cycle, when verifying the
first version of a software component, you may want to focus exclusively
on finding red errors, and not consider orange checks. As development of
the same component progresses, however, you may want to focus more
on orange checks.

¢ Application Requirements — There are actions you can take during
coding to produce more provable code. However, writing provable code
often involves compromises with code size, code speed, and portability.
Depending on the requirements of your application, you may decide to
optimize code size, for example, at the expense of more orange checks.

® Quality Goals — PolySpace software can help you meet quality goals,
but it cannot define those goals for you. Before you verify code, you must
define quality goals for your application. These goals should be based on
the criticality of the application, as well as time and cost constraints.

It is these factors that ultimately determine how many orange checks are
acceptable in your results, and what you should do with the orange checks

that remain.

Thus, a more appropriate question is “How do I manage orange checks?”

Too Many Orange Checks?

This question leads to two main activities:

¢ Reducing the number of orange checks

® Working with orange checks

How to Manage Orange Checks

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve the quality goals
you define. To do this, however, you must integrate PolySpace verification
into your development process.

Similarly, you cannot successfully manage orange checks simply by using
PolySpace options. To manage orange checks effectively, you must take
actions while coding, when setting up your verification project, and while
reviewing verification results.

To successfully manage orange checks, perform each of the following steps:

1 Define your quality objectives to set overall goals for application quality.
See “Defining Quality Objectives” on page 2-5.

2 Set PolySpace analysis options to match your quality objectives. See
“Specifying Options to Match Your Quality Objectives” on page 3-19.

3 Define a process to reduce orange checks. See “Reducing Orange Checks in
Your Results” on page 9-14.

4 Apply the process to work with remaining orange checks. See “Reviewing
Orange Checks” on page 9-30.

9-13

9 Managing Orange Checks

9-14

Reducing Orange Checks in Your Results

In this section...

“Overview: Reducing Orange Checks” on page 9-14

“Applying Coding Rules to Reduce Orange Checks” on page 9-15
“Considering Generated Code” on page 9-20

“Improving Verification Precision” on page 9-21

“Stubbing Parts of the Code Manually” on page 9-26
“Describing Multitasking Behavior Properly” on page 9-28

“Considering Contextual Verification” on page 9-29

Overview: Reducing Orange Checks

There are several actions you can take to reduce the number of orange checks
in your results.

However, it is important to understand that while some actions increase
the quality of your code, others simply change the number of orange checks
reported by the verification, without improving code quality.

Actions that reduce orange checks and improve the quality of your code:

® Apply coding rules — Coding rules are the most efficient means to reduce
oranges, and can also improve the quality of your code.

* Move to generated code — Generated code can reduce orange checks and
eliminate certain types of coding errors.

Actions that reduce orange checks through increased verification precision:

® Set precision options — There are several PolySpace options that
can increase the precision of your verification, at the cost of increased
verification time.

¢ Implement manual stubbing — Manual stubs that accurately model the
behavior of missing functions can increase the precision of the verification.

Reducing Orange Checks in Your Results

® Specify multitasking behavior — Accurately defining call sequences and
other multitasking behavior can increase the precision of the verification.

Options that reduce orange checks but do not improve code quality or the
precision of the verification:

¢ Constrain data ranges — You can use data range specifications (DRS)
to limit the scope of a verification to specific variable ranges, instead of
considering all possible values. This reduces the number of orange checks,
but does not improve the quality of the code. Therefore, DRS should be
used specifically to perform contextual verification, not simply to reduce
orange checks.

Each of these actions have trade-offs, either in development time, verification
time, or the risk of errors. Therefore, before taking any of these actions, it is
important to define your quality objectives, as described in Chapter 2.

It is your quality objectives that determine how many orange checks are
acceptable in your results, what actions you should take to reduce the number
of orange checks, and what you should do with any orange checks that remain.

Applying Coding Rules to Reduce Orange Checks

The number of orange checks in your results depends strongly on the coding
style used in the project. Applying coding rules can both reduce the number of
orange checks in your verification results, and improve the quality of your
code. Coding rules are the most efficient way to reduce orange checks.

PolySpace software allows you to check MISRA C coding rules during
verification. If your code complies with the first subset of MISRA rules (coding
rules with a direct impact on selectivity), the total number of orange checks
will decrease substantially, and the percentage of orange checks representing
real bugs will increase.

In addition, some code constructions are known to produce orange checks. If
your design avoids these constructions, you will see fewer orange checks in
your verification results. The second subset of MISRA rules (coding rules with
an indirect impact on selectivity), checks for these constructions.

The following coding rules are recommended to reduce oranges:

9-15

9 Managing Orange Checks

9-16

e “Set of Coding Rules with a Direct Impact on Selectivity” on page 9-16

e “Set of Coding Rules with an Indirect Impact on Selectivity” on page 9-17

For more information on checking MISRA C coding rules, see Chapter 11,
“MISRA Checker”.

Set of Coding Rules with a Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your
verification results.

Rule | Description

MISRA 8.11 | The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal
linkage

MISRA 8.12 | When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization

MISRA 11.2 | Conversion shall not be performed between a pointer to an
object and any type other than an integral type, another
pointer to a object type or a pointer to void

MISRA 11.3 | A cast should not be performed between a pointer type and
an integral type

MISRA 12.12 | The underlying bit representations of floating-point values
shall not be used

MISRA 13.3 | Floating-point expressions shall not be tested for equality
or inequality

MISRA 13.4 | The controlling expression of a for statement shall not
contain any objects of floating type

MISRA 13.5 | The three expressions of a for statement shall be concerned
only with loop control

MISRA 14.4 | The goto statement shall not be used.

Reducing Orange Checks in Your Results

Rule | Description

MISRA 14.7 | A function shall have a single point of exit at the end of
the function

MISRA 16.1 | Functions shall not be defined with variable numbers of
arguments

MISRA 16.2 | Functions shall not call themselves, either directly or
indirectly

MISRA 16.7 | A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object

MISRA 17.3 | >, >=, <, <= shall not be applied to pointer types except
where they point to the same array

MISRA 17.4 | Array indexing shall be the only allowed form of pointer
arithmetic

MISRA 17.5 | The declaration of objects should contain no more than 2
levels of pointer indirection

MISRA 17.6 | The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 | An area of memory shall not be reused for unrelated
purposes.

MISRA 18.4 | Unions shall not be used

MISRA 20.4 | Dynamic heap memory allocation shall not be used.

Note PolySpace software does not check MISRA rules 16.7, 17.3 and 18.3.

Set of Coding Rules with an Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can
improve the selectivity of your verification results. The following set of coding
rules help address design issues that can impact selectivity.

9-17

9 Managing Orange Checks

9-18

Rule # Description

MISRA 5.1 Identifiers (internal and external) shall not rely on the
significance of more than 31 characters

MISRA 6.3 typedefs that indicate size and signedness should be used
in place of the basic types

MISRA 8.7 Objects shall be defined at block scope if they are only
accessed from within a single function

MISRA 9.2 Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.1 Conversion shall not be performed between a pointer to a
function and any type other than an integral type

MISRA 11.5 Type casting from any type to or from pointers shall not
be used

MISRA 12.1 Limited dependence should be placed on C’s operator
precedence rules in expressions

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits

MISRA 12.4 The right hand operand of a logical && or | | operator shall
not contain side effects

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions

MISRA 12.6 Operands of logical operators (&&, | | and !) should be

effectively Boolean. Expression that are effectively Boolean
should not be used as operands to operators other than

(&&, || or!)

Reducing Orange Checks in Your Results

Rule # Description

MISRA 12.9 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned

MISRA 12.10 | The comma operator shall not be used

MISRA 13.1 Assignment operators shall not be used in expressions that
yield Boolean values

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop

MISRA 14.8 The statement forming the body of a switch, while, do while
or for statement shall be a compound statement

MISRA 14.10 | All if else if constructs should contain a final else clause

MISRA 15.3 The final clause of a switch statement shall be the default
clause

MISRA 16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration

MISRA 16.8 All exit paths from a function with non-void return type
shall have an explicit return statement with an expression

MISRA 16.9 A function i1dentifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty

MISRA 19.4 C macros shall only expand to a braced initializer, a
constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives

MISRA 19.10 | In the definition of a function-like macro each instance of

a parameter shall be enclosed in parentheses unless it is

used as the operand of # or ##

9-19

9 Managing Orange Checks

Rule # Description

MISRA 19.11 | All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef preprocessor
directives and the defined() operator

MISRA 19.12 | There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

Note PolySpace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the
validity of values. For example, the following code checks the validity of an
input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

Considering Generated Code

Moving to generated code can reduce the number of orange checks in your
results, and improve the overall quality of your software.

Generated code has a well-defined set of coding rules, and eliminates certain
types of coding errors by construction. This results in higher ratio of green
checks in your verification results.

The PolySpace Model Link SL, PolySpace Model Link TL, and PolySpace
UML Link™ RH products allow you to integrate PolySpace verification into

a generated code workflow.

For more information, see the PolySpace Model Link Products User’s Guide.

9-20

Reducing Orange Checks in Your Results

Improving Verification Precision

Improving the precision of a verification can reduce the number of orange
checks in your results, although it does not affect the quality of the code itself.

There are a number of PolySpace options that affect the precision of the
verification. The trade off for this improved precision is increased verification
time.

The following sections describe how to improve the precision of your
verification:

¢ “Balancing Precision and Verification Time” on page 9-21

e “Setting the Analysis Precision Level” on page 9-22

® “Setting Software Safety Analysis Level” on page 9-23

® “Other Options that Can Improve Precision” on page 9-24

Balancing Precision and Verification Time

When performing code verification, you must find the right balance between
precision and verification time. Consider the two following extremes:

e [If a verification runs in one minute but contains only orange checks, the
verification is not useful because each check must be reviewed manually.

e [f a verification contains no orange checks (only gray, red, and green), but
takes six months to run, the verification is not useful because of the time
spent waiting for the results.

Higher precision yields more proven code (red, green, and gray), but takes
longer to complete. The goal is therefore to get the most precise results in
the time available. Factors that influence this compromise include the time
available for verification, the time available to review results, and the stage
in the development cycle.

For example, consider the following scenarios:

e Unit testing — Before going to lunch, a developer starts verification. After
returning from lunch the developer reviews verification results for one hour.

9-21

9 Managing Orange Checks

¢ Integration testing — Verification runs automatically on nightly builds of
modules or software components.

These scenarios require a developer to use PolySpace software in different
ways. Generally, the first verification should use the lowest precision mode,
while subsequent verifications increase the precision level.

Setting the Analysis Precision Level

The analysis Precision Level specifies the mathematical algorithm used
to compute the cloud of points (polyhedron) containing all possible states
for the variables.

Although changing the precision level does not affect the quality of your code,
orange checks caused by low precision become green when verified with
higher precision.

Operation: 1 / (x-¥)

Affect of Precision Rate on Orange Checks

9-22

Reducing Orange Checks in Your Results

To set the precision level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.

2 Select the -00, -01, -02 or -03 precision level the Precision Level
drop-down list.

For more information, see “-O(0-3)”in the PolySpace Products for C Reference.

Setting Software Safety Analysis Level

The Software Safety Analysis level of your verification specifies how many
times the abstract interpretation algorithm passes through your code. The
deeper the verification goes, the more precise it is.

There are 5 Software Safety Analysis levels (passO to pass4). By default,
verification proceeds to pass4, although it can go further if required. Each
iteration results in a deeper level of propagation of calling and called context.

To set the Software Safety Analysis level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.

2 Select the appropriate level in the To end of drop-down list.

For more information, see “-to verification-phase”in the PolySpace Products
for C Reference.

Example: Orange Checks and Software Safety Analysis Level

The following example shows how orange checks are resolved as verification
proceeds through Software Safety Analysis levels 0 and 1.

9-23

9 Managing Orange Checks

Safety Analysis Level O Safety Analysis Level 1
#include <stdlib.h> #include <stdlib.h>
void ratio (float x, float *y) void ratio (float x, float *y)
{ {

*y=(abs(x-*y))/(xt*y); *y=(abs(x-*y))/(xt*y);
} }
void leveli (float x, void levelil (float x,

float y, float *t) float y, float *t)

{ float v; { float v;

vV =Y, vV =Y,

ratio (x, &y); ratio (x, &y);

*t 1.0/(v - 2.0 * x); *t = 1.0/(v - 2.0 * X);
} }
float level2(float v) float level2(float v)

{ {

float t; float t;

t = v; t = v;

leveli1 (0.0, 1.0, &t); leveli1 (0.0, 1.0, &t);
return t; return t;

} }
void main(void) void main(void)

{ {

float r,d; float r,d;

d= level2(1.0); d= level2(1.0);

r 1.0 (2.0 d); r=1.0/ (2.0 - d);
} }

In this example, division by an input parameter of a function produces an
orange during Level 0 verification, but turns to green during level 1. The

verification gains more accurate knowledge of x as the value is propagated
deeper.

Other Options that Can Improve Precision
The following options can also improve verification precision:

9-24

Reducing Orange Checks in Your Results

* “Improve precision of interprocedural analysis” on page 9-25
® “Sensitivity context” on page 9-25

® “Inline” on page 9-25

Note Changing these options does not affect the quality of the code itself.
Improved precision can reduce the number of orange checks, but will increase
verification time.

Improve precision of interprocedural analysis. This option causes the
verification to propagate information within procedures earlier than usual.
This improves the precision within each Software Safety Analysis level,
meaning that some orange checks are resolved in level 1 instead of later levels.

However, using this option increases verification time exponentially. In some
cases this could cause a level 1 verification to take longer than a level 4
verification.

For more information, see “-path-sensitivity-delta number”in the PolySpace
Products for C Reference.

Sensitivity context. This option splits each check within a procedure into
sub-checks, depending on the context of a call. This improves precision for
discrete calls to the procedure. For example, if a check is red for one call to
the procedure and green for another, both colors will be revealed.

For more information, see “-context-sensitivity "procl[,proc2[,...]]"’in the
PolySpace Products for C Reference.

Inline. This option creates clones of a each specified procedure for each call
to it. This reduces the number of aliases in a procedure, and can improve

precision in some situations.

However, using this option can duplicate large amounts of code, leading to
increased verification time and other scaling problems.

For more information, see “-inline "procl[,proc2[,...]]"’in the PolySpace
Products for C Reference.

9-25

9 Managing Orange Checks

9-26

Stubbing Parts of the Code Manually

Manually stubbing parts of your code can reduce the number of orange checks
in your results. However, manual stubbing generally does not improve the
quality of your code, it only changes the results.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

The following sections describe how to reduce orange checks using manual
stubbing:

e “Manual vs. Automatic Stubbing” on page 9-26

¢ “Emulating Function Behavior with Manual Stubs” on page 9-27

Manual vs. Automatic Stubbing
There are two types of stubs in PolySpace verification:

* Automatic stubs — The software automatically creates stubs for unknown
functions based on the function’s prototype (the function declaration).
Automatic stubs do not provide insight into the behavior of the function,
but are very conservative, ensuring that the function does not cause any
runtime errors.

® Manual stubs — You create these stub functions to model the behavior
of the missing functions, and manually include them in the verification
with the rest of the source code. Manual stubs can better model missing
functions, or they can be empty.

By default, PolySpace software automatically stubs functions. However,
because automatic stubs are conservative, they can lead to more orange
checks in your results.

Reducing Orange Checks in Your Results

Stubbing Example

The following example shows the effect of automatic stubbing.

void main(void)

a

b=0;
a_missing_function(&a, b);
b 1

Due to automatic stubbing, the verification assumes that a can be any integer,
including 0. This produces an orange check on the division.

If you provide an empty manual stub for the function, the division would be
green. This reduces the number of orange checks in the result, but does not
improve the quality of the code itself. The function could still potentially
cause an error.

However, if you provide a detailed manual stub that accurately models the
behavior of the function, the division could be any color, including red.

Emulating Function Behavior with Manual Stubs

You can improve both the speed and selectivity of your verification by
providing manual stubs that accurately model the behavior of missing
functions. The trade-off is time spent writing the stubs.

Manual stubs do not need to model the details of the functions or procedures
involved. They only need to represent the effect that the code might have on
the remainder of the system.

Example

This example shows a header for a missing function (which may occur when
the verified code is an incomplete subset of a project).

int a,b;

int *ptr;
void a_missing_function(int *dest, int src);

9-27

9 Managing Orange Checks

9-28

/* should copy src into dest */
void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b =1 a;

}

The missing function copies the value of the src parameter to dest, so there
is a division by zero error.

However, automatic stubbing always shows an orange check, because a is
assumed to have any value in the full integer range. Only an accurate manual
stub can reveal the true red error.

Using manual stubs to accurately model constraints in primitives and outside
functions propagates more precision throughout the application, resulting in
fewer orange checks.

Describing Multitasking Behavior Properly

The asynchronous characteristics of your application can have a direct impact
on the number of orange checks. Properly describing characteristics such as
implicit task declarations, mutual exclusion, and critical sections can reduce
the number of orange checks in your results.

For example, consider a variable X, and two concurrent tasks T1 and T2.

X 1s 1nitialized to 0.

® T1 assigns the value 12 to X.

T2 divides a local variable by X.

A division by zero error is possible because T1 can be started before or after
T2, so the division causes an ZDV.

The verification cannot determine if an error will occur without knowing the
call sequence. Modelling the task differently could turn this orange check
green or red.

Reducing Orange Checks in Your Results

Refer to “Preparing Multitasking Code” on page 5-19 for information on
tasking facilities, including:
e Shared variable protection:
= Critical sections,
= Mutual exclusion,
= Tasks synchronization,
® Tasking:
= Threads, interruptions,
= Synchronous/asynchronous events,

= Real-time OS.

Considering Contextual Verification

By default, PolySpace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on
these inputs could produce an overflow.

PolySpace software also allows you to perform contextual verification, proving
that the software works under normal working conditions. When performing
contextual verification, you use the data range specifications (DRS) module to
set external constraints on global variables and stub function return values,
and the code is verified within these ranges.

Contextual verification can substantially reduce the number of orange checks
in your verification results, but it does not improve the quality of your code.

Note DRS should be used specifically to perform contextual verification, it is
not simply a means to reduce oranges.

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)” on page 4-34.

9-29

9 Managing Orange Checks

9-30

Reviewing Orange Checks

In this section...

“Overview: Reviewing Orange Checks” on page 9-30

“Defining Your Review Methodology” on page 9-30

“Performing Selective Orange Review” on page 9-32

“Importing Review Comments from Previous Verifications” on page 9-35
“Commenting Code to Provide Information During Review” on page 9-36
“Working with Orange Checks Caused by Input Data” on page 9-37

“Performing an Exhaustive Orange Review” on page 9-39

Overview: Reviewing Orange Checks

After you define a process that matches your quality objectives, you do not
have too many orange checks. You have the correct number of orange checks
for your quality model.

At this point, the goal is not to eliminate orange checks, it is to work
efficiently with them.

Working efficiently with orange checks involves:

® Defining a review methodology to work consistently with orange checks

® Reviewing orange checks efficiently

Importing comments to avoid duplicating review effort

Dynamically testing orange checks

Defining Your Review Methodology

Before reviewing verification results, you should configure a methodology for
your project. The methodology defines both the type and number of orange
checks you need to review to meet three criteria levels.

Reviewing Orange Checks

~Mumber of checks to review

Criterion 1 Criterion 2 Criterion 3

—Camman

ZDV 5 20 ALL

MIVL 10 50 ALL

S-OVFL 10 50 ALL

COR 0 10 10

MIY 0 a 10

F-OVFL 5 10 20

ASRT 0 5 20
—C B C++ only

CBAI 10 20 ALL

SHF 5 10 ALL

IDP 0 10 20

MIP 0 10 20
—C only

IRV |5 f20 ALL

Sample Review Methodology

The criteria levels displayed in the methodology represent quality levels you
defined as part of the quality objectives for your project.

Note For information on setting the quality levels for your project, see

Chapter 2.

After you configure a methodology, each developer uses it to review
verification results. This ensures that all users apply the same standards
when reviewing orange checks in each stage of the development cycle.

For more information on defining a methodology, see “Selecting the
Methodology and Criterion Level” on page 8-27.

9-31

9 Managing Orange Checks

Performing Selective Orange Review

Once you have defined a methodology for your project, you can use assistant
mode to perform a selective orange review.

The number and type of orange checks you review is determined by your
methodology and the quality level you are trying to achieve. As a project
progresses, the quality level (and number of orange checks to review)
generally increases.

For example, you may perform a level 1 review in the early stages of
development, when trying to improve the quality of freshly written code.
Later, you may perform a level 2 review as part of unit testing.

In general, the goal of a selective orange review is to find the maximum
number of bugs in a short period of time. Many orange checks take only a
few seconds to understand. Therefore, to maximize the number of bugs you
can identify, you should focus on those checks you can understand quickly,
spending no more than 5 minutes on each check. Checks that take longer to
understand are left for later analysis.

To perform a selective orange review:

1 Click the Assistant button in the Viewer to select assistant mode.
The Viewer window toolbar displays the assistant mode controls.

2 Select the methodology for your project from the methodology menu.

Methodalogy for C LI
Methodology for Ada

Methodalogy for ©
Methodology for C++
Methodaology for Model Based Designed

3 Select the appropriate quality level for your review using the level slider.

J—

1 2 a

9-32

Reviewing Orange Checks

4 Navigate through the checks by clicking the forward arrow

5 Perform a quick code review on each orange check, spending no more than
5 minutes on each.

Your goal is to quickly identify whether the orange check is a:
¢ potential bug — code which will fail under some circumstances.

¢ inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

¢ data set issue — a theoretical set of data that cannot actually occur.

See “Sources of Orange Checks” on page 9-6 for more information on each
of these causes.

Note If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand.

6 If you cannot identify a cause within 5 minutes, move on to the next check.

Note Your goal is to find the maximum number of bugs in a short period of
time. Therefore, you want to identify the source of as many orange checks
as possible, while leaving more complex situations for future analysis.

7 Once you understand the cause of an orange check, select the check box to
indicate that you have reviewed the check.

9-33

9 Managing Orange Checks

9-34

example.c / Recursion [line 142 { column 15

+ advance = 1.0£/ (float) (*depth); /* potential division by zero */

¥ IROB ;”Nutanlssue LI @I‘\?alae of depth cannot be negative, not an issue for now

ﬂ
Orange may be caused by the stubbked function random int in example.c line 152 column 10
ocperator / on type float 32

left: 1.0

right: [-2.147SE ° .. -2.9999] or [-2.0001 .. -9.9999E '] or 0.0 or [2.9999 .. 1.0 o

8 Select an acronym to describe the check in the Predefined acronyms menu:
¢ NOW — Bug to fix now.
¢ NXT — Bug to fix in Next Release
* ROB — Robustness Issue

DEF — Defensive Code

MIN — Minor quality issue
OTH - Other

Note You can also define your own acronyms, which then appear in the
user-defined acronym menu. For more information see “Defining Custom
Acronyms ” on page 8-49.

9 Enter a comment for the reviewed check in the text box, indicating the
results of your review.

10 Continue to click the forward arrow until you have reviewed all of the
checks identified by the assistant.

11 Select File > Save checks and comments to save your review comments.

Reviewing Orange Checks

Importing Review Comments from Previous
Verifications

Once you have reviewed verification results for a module and saved your
comments, you can import those comments into subsequent verifications of
the same module, allowing you to avoid reviewing the same check twice.

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.
2 Select File > Import checks and comments.

3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Once you import checks and comments, the go to next check L4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check g icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.
To see the changes that affect your review comments, open the Import/Export
Report.

For more information, see “Importing and Exporting Review Comments”
on page 8-53.

9-35

9 Managing Orange Checks

Commenting Code to Provide Information During
Review

You can place comments in your code to provide information on known issues.
When reviewing results, you can use these comments to:

¢ Highlight and quickly understand issues identified in previous verifications

¢ Identify and skip previously reviewed checks.

This allows you to avoid reviewing the same check twice, and focus your
review on new issues.

You must annotate your code before running a verification:

if (random int() > 0)
{
V* polyspace<RTE: NTC : OTH : EGC > This run-time error was discovered previously */
Square_Root ()
}

Unreachable Code();

In the Viewer, the Acronym, User Acronym and Comment columns
display your code comments. In addition, in the Reviewed column , the
check box is selected.

| Procedural entities T ~|Line| Col| & Details Reviewed| Acronym |User Acronym Comment
|25 pemo c 2E 228 34 -
E o 4|8 2| 1 22 fexample.c r
37 | 12 | 77 |examplec —
8 | 11 | 100 fxample.c r
B3 | 12 | %5 |examplec r
23 -] function retums an initisi -
231 | 12 function retums an in -
28| 8 function retums an in r
™| 8 the example.c. Square_Root call never teminates| [OTH EGC [This run-time sror was discoversd previously|
a7 | 12 | 33 fexamplec -

For more information, see “Highlighting Known Coding Rule Violations and
Run-Time Errors” on page 5-34.

9-36

Reviewing Orange Checks

Working with Orange Checks Caused by Input Data

PolySpace verification identifies orange checks caused by input data. These
types of orange checks usually do not reveal bugs, so you may want to hide
them before reviewing your results.

Note Orange checks impacted by inputs could contain a bug, but the
probability of them revealing bugs is low.

Verification identifies orange checks caused by:

Stubs

® Main-generator calls

Volatile variables

Extern variables

Absolute address

Filtering Orange Checks Caused by Inputs
The Viewer allows you to hide orange checks impacted by inputs. These types

of orange checks usually do not reveal bugs, so hiding them can increase
the efficiency of your review.
To hide orange checks impacted by inputs:

1 In the Viewer, switch to Expert mode.

2 In the Viewer toolbar, click the filter button to hide the orange checks
impacted by input data.

o _F'EIIIIZ_E | o

Filter orange
impacted by inputs

il

9-37

9 Managing Orange Checks

Additional Information on Orange Checks Caused by Inputs

When the verification identifies orange checks impacted by inputs, it provides
additional information about the cause of the orange check. This information
can help you review results more efficiently.

To see information on the source of the orange, click the check in the Source
code view.

= cxample.Close_To_Zero.OVFL.3 i]

in "example.c” ling 43 column 12
Source code :

Note If the source of an orange is restricted by DRS, it does not appear as a
possible source of imprecision.

The PolySpace code verification log file also lists possible sources of
imprecision for orange checks.

To see information on possible sources of imprecision, open the code
verification log.

9-38

Reviewing Orange Checks

=Additional information about code verification o] 4|
Summary
Lines of code : 243 (136 without comments)
Number of files : 1
Processing time : 00:02:36 (156.5real, 156.5u + 0s (0.3gc))

~PolySpace code verification log

Cranges classification: ﬂ
* Rhutomatically stubbed function random float may be scurce of 3 orange checks

* Automatically stubbed function random int may be source of 2 orange checks

®* Automatically stubbed function get bus status may be source of 1 orange checks

* Volatile wariable get oil pressure.vol i declared at file example.c line 23 ma

* Wolatile wariable random 5 declared at file _ polyspace_ stdstubs.c line 234 m_

’ | o

Performing an Exhaustive Orange Review

Up to 80% of orange checks can be resolved using multiple iterations of the
process described in “Performing Selective Orange Review” on page 9-32.
However, for extremely critical applications, you may want to resolve all
orange checks. Exhaustive orange review is the process for resolving the
remaining orange checks.

An exhaustive orange review is generally conducted later in the development
process, during the unit testing or integration testing phase. The purpose of
an exhaustive orange review is to analyze any orange checks that were not
resolved during previous selective orange reviews, to identify potential bugs
in those orange checks.

You must balance the time and cost of performing an exhaustive orange
review against the potential cost of leaving a bug in the code. Depending on
your quality objectives, you may or may not want to perform an exhaustive
orange review.

Cost of Exhaustive Orange Review

During an exhaustive orange review, each orange check takes an average of
5 minutes to review. This means that 400 orange checks require about four
days of code review, and 3,000 orange checks require about 25 days.

9-39

9 Managing Orange Checks

However, if you have already completed several iterations of selective orange
review, the remaining orange checks are likely to be more complex than
average, increasing the average time required to resolve them.

Exhaustive Orange Review Methodology
Performing an exhaustive orange review involves reviewing each orange

check individually. As with selective orange review, your goal is to identify
whether the orange check is a:

® potential bug — code which will fail under some circumstances.

¢ inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

® data set issue — a theoretical set of data that cannot actually occur.

¢ Basic imprecision — checks caused by imprecise approximation of the
data set used for verification.

Note See “Sources of Orange Checks” on page 9-6 for more information on
each of these causes.

Although you must review each check individually, there are some general
guidelines to follow.

1 Start your review with the modules that have the highest selectivity in
your application.

If the verification finds only one or two orange checks in a module or
function, these checks are probably not caused by either inconclusive
verification or basic imprecision. Therefore, it is more likely that these
orange checks contain actual bugs. In general, these types of orange checks
can also be resolved more quickly.

2 Next, examine files that contain a large percentage of orange checks
compared to the rest of the application. These files may highlight design
issues.

9-40

Reviewing Orange Checks

Often, when you examine modules containing the most orange checks,
those checks will prove inconclusive. If the verification is unable to draw
a conclusion, it often means the code is very complex, which can mean
low robustness and quality. See “Inconclusive Verification and Code
Complexity” on page 9-41.

3 For all files you review, spend the first 10 minutes identifying checks that
you can quickly categorize (such as potential bugs and data set issues),
similar to what you do in a selective orange review.

Even after performing a selective orange review, a significant number of
checks can be resolved quickly. These checks are more likely than average
to reflect actual bugs.

4 Spend the next 40 minutes of each hour tracking more complex bugs.

If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand. See
“Resolving Orange Checks Caused by Basic Imprecision” on page 9-42.

5 Depending on the results of your review, correct the code or comment it to
identify the source of the orange check.

Inconclusive Verification and Code Complexity

The most interesting type of inconclusive check occurs when verification
reveals that the code is too complicated. In these cases, most orange checks in
a file are related, and careful analysis identifies a single cause — perhaps a
function or a variable modified many times. These situations often focus on
functions or variables that have caused problems earlier in the development
cycle.

For example, consider a variable Computed_Speed.

® Computed_Speed 1s first copied into a signed integer (between -2731 and
2131-1).

e Computed_Speed 1s then copied into an unsigned integer (between 0 and
2731-1).

9-41

9 Managing Orange Checks

9-42

® Computed_Speed is next copied into a signed integer again.

¢ Finally, Computed_Speed is added to another variable.
The verification reports 20 overflows (OVFL).

This scenario does not cause a real bug, but the development team may know
that this variable caused trouble during development and earlier testing
phases. PolySpace verification also identified a problem, suggesting that

the code is poorly designed.

Resolving Orange Checks Caused by Basic Imprecision

On rare occasions, a module may contain many orange checks caused by
imprecise approximation of the data set used for verification. These checks are
usually local to functions, so their impact on the project as a whole is limited.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly.

In these cases, PolySpace software can only assist you through the call tree
and dictionary. The code needs to be reviewed using alternate means. These
alternate means may include:

Additional unit tests

® Code review with the developer

Checking an interpolation algorithm in a function

Checking calibration data

For more information on basic imprecision, see “Sources of Orange Checks”
on page 9-6.

Automatically Testing Orange Code

Automatically Testing Orange Code

In this section...

“Automatic Orange Tester Overview” on page 9-43

“Before Using the Automatic Orange Tester” on page 9-46
“Launching the Automatic Orange Tester” on page 9-48
“Reviewing the Test Results” on page 9-52

“Refining Data Ranges” on page 9-56

“Saving and Reusing Your Configuration” on page 9-60
“Exporting Data Ranges for PolySpace Verification” on page 9-61
“Configuring Compiler Options” on page 9-62

“Technical Limitations” on page 9-63

Automatic Orange Tester Overview

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you 1dentify the cause of these errors.

The Automatic Orange Tester complements results review in the Viewer.
Manually performing an exhaustive orange review can be time consuming.
The Automatic Orange Tester saves time by automatically creating test cases
for all input variables in orange code, and then dynamically testing the code
to find actual runtime errors.

The Automatic Orange Tester also provides detailed information on why each
test-case failed, including the actual values that caused the error. You can
use this information to quickly identify the cause of the error, and determine
if there 1s an actual bug in the code.

Note To run the Automatic Orange Tester on Linux or Unix systems, you
must have a 32-bit C compiler.

9-43

9 Managing Orange Checks

. PolySpace Automatic Orange Tester - _testgen.tgf - | Ell_i

File Options Help

Variable Name | Type | Values | Advanced |f
E|E| External Scope
E D Function: random_float

I return float32 min. .max Advanced I
- return int32 i, .max Advanced I

EI D Function: get_bus_status

=] int32 i, & Advanced I

E} D Function; read_bus_status

=T int32 min. .max Advanced I .

-

~Test Campaign Configuration ——— ~Test Campaign Results
Completed tests: 1000
Mumber of tests: I 1000 Mo PolySpace run-time errors detected: 176
Mumber of iterations for loops: I 100 Total failed: 824
Per test timeout (in second): I—ID MNumber of checks/Tests with errors: 15/824
Timeout: 0
Stopped tests: 0

Start | Stop All | Stop Gurrent |

iResults : File Line Column Error # Testcases Failed |[®
_Log [initislisations.c 47 & IDP (llegal Derefere... (237 =
initizlisations.c a9 7 MIVL (Mon Initialised ... (127
example.c 26 2 ASRT (User Assertio... (38
example.c 43 12 COVFL (Float Qverflow) (29
single_file_analysis.c |25 137 ASRT (User Assertio,., 32
single_file_analysis.c |26 137 ASRT (User Assertio... (130 B
example.c 104 10 IDP (legal Derefere... (39
example.c 43 12 UNFL (Float Underflow) (29
example.c 49 156 OVFL (Float Overflow) (21 v|

PolySpace® Automatic Orange Tester

9-44

Automatically Testing Orange Code

Note The version of the product used to verify the source code must be the
same as the one used for analysis in the Automatic Orange Tester. If you
open verification results created with an older version of the product in the
Automatic Orange Tester, you may get a compilation error.

To avoid this problem, re-launch the code verification with the current version
of the product.

9-45

9 Managing Orange Checks

9-46

How the Automatic Orange Tester Works

PolySpace verification mathematically analyzes the operations in the code
to derive its dynamic properties without actually executing it (see “What is
Static Verification” on page 1-4). While this verification can identify almost
all runtime errors, some operations cannot be proved either true or false
because the input values are unknown. These are reported as Orange checks
in the Viewer (see “What is an Orange Check?” on page 9-2).

The Automatic Orange Tester takes the PolySpace verification results, and
generates instrumented code around orange checks so the code can be run. It
then generates test cases based on the input variables, and dynamically tests
the code for runtime errors.

This dynamic testing approach allows the Automatic Orange Tester to
separate actual runtime errors from theoretical problems. You can then focus
on these errors to determine if an orange check is identifying an actual bug.

Limitations of Dynamic Testing

Because the Automatic Orange Tester uses a finite number of test cases to
analyze the code, there is no guarantee that it will identify a problem in any
individual test campaign. It is therefore possible that a particular variable
value causes an error, but that value was never tested.

Similarly, since the Automatic Orange Tester builds test cases each time
your run it, there is not guarantee that it will produce the same results with
each test campaign.

You can specify the number of tests to run in each test campaign. Running
more tests increases the chances of finding a runtime error, but also takes
more time to complete.

Before Using the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To run the verification:

Automatically Testing Orange Code

1 Open the PolySpace Launcher for C.

2 Load the project Demo_C-without-MISRA-checker.cfg.

3 In the Analysis Options window, expand the PolySpace inner settings

menu.

4 Select the Automatic Orange Tester check box.

Search internal name from the selected line: I

2L

MName Value Internal name
Analysis options
[#-General
[#]-Target/Compilation
[#]-Compliance with standards
[=1-PalySpace inner settings
[+--Run a verification unit by unit - -unit-by-unit
[H--Generate a main W -main-generator
[#-Stubbing
[#-Assumptions
i W i
----- Run verification in 32 or 64-bit mode auto -machine-architecture
----- Mumber of processes for multiple CPU care systems [4 ‘Max-processes

----- Other options

[-Precision/Scaling

[#]-Multitasking

The -prepare-automatic-tests option is enabled.

5 Deselect Send to PolySpace Server.

6 Click Start.

The PolySpace verification starts. During the compilation phase, the
software generates the data necessary to perform dynamic tests. The
PolySpace verification then continues as usual.

When the verification process completes, the software asks if you want to

launch PolySpace Viewer.

9-47

9 Managing Orange Checks

9-48

7 Click OK to launch the viewer.

Launching the Automatic Orange Tester

Once the PolySpace verification is complete, you can use the Automatic
Orange Tester to perform dynamic tests of the unproven (orange) code.

To perform dynamic tests with the Automatic Orange Tester:

1 Open your results in the PolySpace Viewer.

Automatically Testing Orange Code

PolySpace Viewer - C:\PolySpace\polyspace_project\results\RTE_px_Example_| _RESULTS.rte _IEIIﬂ
File Edit Reports Windows Help

J' [N - | | L) L] | af E . @ o) - i J ,3; mj JIAlpha - (;‘SnsistamlJSearmm: Active Source Code VI LI '® v ﬁlﬂ

. e il PR — I = . . NI . FLOAT
JIHE“'E"““"E’“" j'| X 7 v | Launch the PolySpace Automatic Orange Tester, | '™ * #HF “othier' MIP *‘guri « FSKT - NTE (GHTE - MTL o WhR - on

Coding review progress Count | Progress example.c [Close_To_Zero / line 43 f column 12
num F-OVFL reviewed / num F-OVFL to review (Orange) [0/3 [i] if ((maxz D smin) < 1.0E-37%)
num reviewed / num to review (Orange) /10 0
|5oftware reliabiity indicator 36/137 LSl = =1 @I

Orange may be caused by the stubbed function random float in example.c line 39 column 15
operator - on type float 32

left: full-range [-3.4029E °° .. 3.4029E -0
. +38 +38
right: full-range [-3.4029%E .. 3.4029E 1
result: full-range [-3.4025E °° .. 3.4029E 7]

I Procedural entities #|%¢| ?|+|Line| Col| & Detals Variables View El Call Tree View El
Example_Proj T |84 10|85 95 y ¥4
lﬁ ple_Froject ﬁs' H-3HR [SHME]
sxample.c B (zz(a|T0] 1 52 |eample o
N Variables # Read| # Write| Fie | Line| Col] D
0| 37 |12 | 77 jexample.c =
m o
39|15 function retumns an initiali : e ——
[l __potyspace__stdstubs.ermo [] 2 | _polys...|175(4 [int pst_stubs_0.random_float
40 |18 function returns an initiali . . e e s | 175] 4 » N — —
e stdstubs, _init, 5 t_stubs_0.random_float
a7 local variable is initizlzed el - —F S -
4 __polyspace__stdstubs sqrt |_polys...| 885| 21 4 example RTE
43 |12 Unproven : operation [-] 4
42 | 14 local variable is initialized
49 (11 local ariable is initialized
49 |1. Unproven : operation [+]
43 |18 locsl variable is initisfized | | 14] | |
43 |24 Unproven : operation [/] ¢ x
|28 | |nostivison by e s =151x]
L |e? focal varistle is initislzed || 37 static void Close_To_Zero (void) -l
43 |22 loperation [-] en float doe: || 335 f
43 | 4 local vaniable s initislzed 39 float wuin = random float(); o
4 &5 | 11 [100 example.c an float xmax = random floati);
3 19| 85 | 12 | 96 |examplec 41 float ¥:
2 2|22z | & | 100 example.c 4z
4| 137 | 12 | 52 fexamplec 43 if {{xmax - xwin) < 1.0E-37L)
4 | 1581 | 12 | 100 |jxample.c 44 {
4 | 185 | 12 | 100 fexample.c 45 ¥ = 1.0E:
T 179 [12 | 100 jepxample.c 16 '
2| e | s8] 12| 2 foampec < Sl
. - o . .
22| 20 |11 | 20 focempeo 48 { /% division by.zeto is 1mp0551}.JlE here */
i 49 ¥ o= (®max + xmin) / (xmax - xmin);
g2| z |14 1 7 | polyspace_stdstubs.c 0) = —_— = =
2 1 100 |__pohyspace_main.c
al 1
|] |- |

Example_Project Source file: example.c example.c Line: 43 Column: 12

2 Click E (Launch the PolySpace Automatic Orange Tester) in the toolbar
to open the Automatic Orange Tester.

The Automatic Orange Tester opens.

9-49

9 Managing Orange Checks

9-50

PolySpace Automatic Orange Tester - _testgen.tgf

File Options Help

=10l x|

E} D Function: read_bus_status

Variable Mame I Type | Values I Advanced |53
E|E| External Scope =
E} D Function: random_float
Q return float32 min. .max Advanced |
EI- D Function; random_int
return int32 mir. . max Advanced |
E}D Function: get_bus_status]
Q return int32 min. .max Advanced |

=l
F . A
~Test Campaign Configuration———— ~Test Campaign Results
Completed tests: [i]
Number of tests: I A Mo PolySpace run-time errors detected: 0
Mumber of iterations for loops: I 100 Total failed: o]
T I—ID Mumber of checks Tests with errars: o]
Timeout: 0
Stopped tests: o]
Start | Stop Al | Stop Current |
Idle | 0%
Results File Line Column I Error | # Testcases Failed |f5
_log -
||

3 In the Test Campaign Configuration window, specify the following

parameters:

* Number of tests — Specifies the total number of test cases you want
to run. Running more tests increases the chances of finding a runtime
error, but also takes more time to complete.

¢ Number of iterations for infinite loops — Specifies the maximum
number of loop iterations to perform before the Automatic Orange Tester

Automatically Testing Orange Code

identifies an infinite loop. A larger number of iterations decreases the
chances of incorrectly identifying an infinite loop, but also may take
more time to complete.

® Per test timeout — Specifies the maximum time that an individual test
can run (in seconds) before the Automatic Orange Tester moves on to
the next test. Increasing the time limit reduces the number of tests that
timeout, but can also increase the total verification time.

4 Click Start to begin testing.

The Automatic Orange Tester generates test cases and runs the dynamic
tests.

9-51

9 Managing Orange Checks

im0
File Options Help
Variable Mame I Type | Values I Advanced |53
E|E| External Scope =
E} D Function: random_float
Q return float3z . .max Advanced |
int32 mir. .max Advanced |
E}D Function: get_bus_status 1
return int32 . .max Advanced |
E}D Function: read_bus_status ‘ﬂ

. 2

Start | %

~Test Campaign Configuration———— ~Test Campaign Results
Completed tests: 640
Number of tests: I L Mo PolySpace run-time errors detected: 122
Mumber of iterations for loops: I 100 Total failed: 518
e e e A e I—m Mumber of checks Tests with errars: 15/518
Timeout: 0
Stopped tests: 1]

Stop Current |

Running... Time Remaining: 00:00:08 _
i File Line Column Error # Testrases Failed |F
_Lod levample.c 114 19 OVFL (Scalar Overflow) |12]
initialisations.c 33 7 MIVL (Mon Initialised ... |70
initialisations.c 47 & IDP (Tlegal Derefere... 139
example.c 43 12 OVFL (Float Overflow) |21
example.c 26 2 ASRT {User Assertio... |24
single_file_analysis.c |26 137 ASRT (User Assertio... |101
example.c 104 10 IDP (Ilegal Derefere... |27
single file analysis.c (25 137 [4SRT (User Assertio... |53 j

5 If you want to stop the testing before it completes:

¢ (Click Stop Current to stop the current test an move on to the next one.

¢ (Click Stop All to immediately stop all tests.

Automatically Testing Orange Code

Reviewing the Test Results

When testing is complete, the Automatic Orange Tester displays an overview
of the testing results, along with detailed information about each failed test.

~Test Campaign Configuration——

Number of tests: I 1000

Mumber of iterations for loops: 100

Per test timeout (in second): I 10

Start |

Test Completed

Time Remaining: 00:00:00

~Test Campaign Results

Completed tests: 1000
Mo PolySpace run-time errors detected: 191
Total failed: 809
Mumber of checks Tests with errars: 15/809
Timeout: 0
Stopped tests: o]

Stop Al | Stop Current |

o

i File Line Column Error # Testcases Failed |
_Log lexample.c 114 19 CVFL (Scalar Overflow) |23 =

initialisations.c 39 7 MIVL (Mon Initislised ... |130

initialisations.c 47 & IDP (Ilegal Derefere.., |217

example.c 43 12 OVFL (Float Overflow) |29

example.c 26 2 ASRT (User Assertio... |39

single_file_analysis.c |26 137 ASRT {User Assertio... |150

example.c 104 10 IDP (Ilegal Derefere.., |38

single file analysis.c (25 137 [4SRT fUser Assertio. .. [30 j

Test Campaign Results

The Test Campaign Results window displays overview information about the
results of your dynamic tests, including:

¢ Completed tests — Displays the total number of tests completed.

¢ No PolySpace runtime errors detected — Displays the number of tests
that did not produce a runtime error.

¢ Total failed — Displays the number of tests that produced a runtime error.

¢ Number of checks/Tests with errors — Displays the number of
PolySpace checks that produced at least one failed test, as well as the total

number of tests that produced a runtime error.

9-53

9 Managing Orange Checks

9-54

* Timeout — Displays the number of tests that exceeded the specified Per
test timeout limit.

* Stopped tests — The number of tests that were stopped manually.
Use the Test Campaign Results Window to see an overall assessment of

your test results, as well as to decide if you need to increase the Per test
timeout value.

Results Table
The Results table displays detailed information about each failed test, to help

you identify the cause of the runtime error. This information includes:
e The filename, line number, and column in which the error was found.
¢ The type of error that occurred.

¢ The number of test cases in which the error occurred.

In addition, You can view more details about any failed test by clicking on the
appropriate row in the Results table. The Test Case Detail dialog box opens.

Automatically Testing Orange Code

Bl est Case Detail =101 x|
example.c I
103 { =
104 *p = 5; /* Out of bounds */
105
106 else
107 I
108 i++ —
109 }
110 }
111
112 i = get_bus_status();
113
114 if (i >=0) {<ok) = 103} =
. d
Line: 114 (col 19): OVFL (Scalar Overflow)
TestCase Reason
1 [In operation 4 * 1228805911, result type is int 32] =
122 [In operation 4 = 1877372035 , result type is int 32]
153 [In operation 4 * 1314702766 , result type is int 32]
210 [In operation 4 * 1837267571 , result type is int 32]
277 [In operation 4 * 1583681309 , result type is int 32]
300 [In operation 4 * 1154961833 , result type is int 32]
357 [In operation 4 * 1882381688 , result type is int 32]
358 [In operation 4 * 1356407201 , result type is int 32]
1434 [In operation 4 * 351384202 , result type is int 32] o
532 [In operation 4 * 1385817304 , result type is int 32]
533 [In operation 4 * 1518333200 , result type is int 32]
575 [In operation 4 * 1068031457 , result type is int 32]
K31 [In operation 4 * 665380428 |, result type is int 32]
743 [In operation 4 * 663006287 , result type is int 32] :I
QK |

The Test Case Detail dialog box displays the portion of the code in which the
error occurred, and gives detailed information about why each test case failed.
Since the Automatic Orange Tester performs runtime tests, this information

includes the actual values that caused the error.

You can use this information to quickly identify the cause of the error, and

determine if there is an actual bug in the code.

9-55

9 Managing Orange Checks

9-56

Log

The Log window displays a complete list of all the tests which failed, as well

as summary information.

You can copy information from the log window to paste into other applications,

such as Microsoft® Excel®.

~Test Campaign Configuration———

MNumber of tests: I 1000
Mumber of iterations for loops: I

Per test timeout (in second):

Start |

Test Completed Time Remaining: 00:00:00

~Test Campaign Results

Completed tests: 1000
Mo PolySpace run-time errors detected: 191
Total failed: 809
Mumber of checks/Tests with errors; 15/809
Timeout: 0
Stopped tests: 0

Stop Al | Stop Current

10

ITest Summary

Results [Test 998: initizlizations. c:85 (col 7) Red NIVL (Mon Initislised Local Variable) [Type is int 32]
Test 995 Warning: C:'\PolySpace\PolySpaceForCandCPP_R.2009b\Examples'Demo_C_Single-Filesources!initialisations. c!
Test 1000: example.c: 26 (col 2) Red ASRT (User Assertion Failed) [Value = 0]

Mumber of tests
Completed tests
Ma PolySpace run-time errors detected
Total failed
Mumber of checks/Tests with errors
Timeout
Stopped tests
Test duration: 25 seconds
T_ETt ended at: Thu Jul 02 19:14:34 EDT 2009
4

1000
1000
191
309
15/309
0

0

o

The log file is also saved in the PolySpace-Instrumented folder with the

following filename:

TestGenerator_day _month_year-time.out

Refining Data Ranges

The Automatic Orange Tester allows you to specify ranges for external
variables. This allows you to perform runtime tests using real-world values

for your variables, rather than randomly selected values.

Automatically Testing Orange Code

Setting ranges for your variables reduces the number of tests that fail due
to unrealistic data values, allowing you to focus on actual problems, rather
than purely theoretical problems. Once you set data ranges, you can export
them to a DRS file for use in future verifications, reducing the number of
orange checks in your results (see “Exporting Data Ranges for PolySpace
Verification” on page 9-61).

To refine your data ranges:

1 In the Variables section at the top of the Automatic Orange Tester, identify
the variable for which you want to set a data range.

-Ioix
File ©Options Help
Variable Name I Type I Values I Advanced |f5
=[] External Scope =
Ié} D Function: random_float
Q return float32 mir, max Advanced I
D Function: random_int
Q return int32 min. .max Advanced I
= D Function: get_bus_status
Q int32 min., .max Advanced[I
D Function: read_bus_status
Q return int32 min. .max Advanced I
=[] senp_messace =

i = ek indR ¥ e Achrancad
-y

-
~Test Campaign Configuration——— ~Test Campaign Results |

Completed tests: 1000

Number of tests: I QY Mo PolySpace run-time errors detected: 191

Mumber of iterations for loops: I 100 Total failed: BO9

B e e i szl I—ID MNumber of checksTests with errors: 15/809

Timeout: 1]

Stopped tests: 1]

Start | Stop Al | Stop Current |

Test Completed Time Remaining: 00:00:00
iResults File Line Column Errar # Testcases Faled |
_Log lexample.c 114 19 CVFL (Scalar Overfl... |23 =

initialisations.c 39 7 MIVL {Mon Initialised. .. |130

initialisations.c 47 [IDF (Tlegal Derefere...|217

example.c 43 12 OVFL (Float Overflow) |29 -
example.c 26 2 ASRT {User Assertio... |39

single_file_analysis.c |26 137 ASRT (User Assertio... (150

9-57

Managing Orange Checks

9-58

2 Select Advanced. The Edit Values dialog box opens.

_ioix

Files INone -External Scope

Function: Iget_bus_siﬁms.return

Type: Iint32

Values: Imin..max

—Pointer Options

Set the writing mode for a pointer variable.
¥ Write to the pointed obiect
Writing mode : MO

SING : Only write to the pointed object or the first element in an array.
MULT @ Write to the complete object pointed at. For example all elements in an array will be written,

Variable Values

" Single Yalue I
% Range of values min: Imin min
Mg ID EY
Previous | Next | OK Cancel

3 Set the appropriate values for the variable:
Single Value — Specifies a constant value for the variable.

Range of values, — Specifies a minimum and maximum value for the
variable.

Note For pointers, you can also specify the writing mode:
SING — The tests only write the object or first element in the array.

MULT - The tests write the complete object, or all elements in the array.

Automatically Testing Orange Code

4 Click Next to edit the values for the next variable.

5 When you have finished setting values, click OK to save your changes
and close the Edit Values dialog box.

6 Click Start to retest the code.

The Automatic Orange Tester generates test cases, runs the tests, and
displays the updated results.

9-59

9 Managing Orange Checks

PuIySpace Automatic Orange Tester - _testgen.tgf - |EI|5|
File Options Help

d

“ariahle Mame Type Values I Advanced I
E—D External Scope
= El Function: random_float

Le float32 0.10000000 Advanced |

= l:l Function: randarn_int

I—Q return int32 min..0 Achvancedd I

= El Function: get_bus_status

L= retumn int32 00,0 Advanced ||

= l:l Function: read_bus_status

L@ return int32 Hin. P Advanced I

| »

= D Function: read_on_bus ;I
-
~Test Campaign Configuration——— ~Test Campaign Results
Completed tests: 1000
ey @ ik I 000 Mo PolySpace run-time errors detected: 997
Murmber of iterations for infinite loops; 100 Total failed: 3
I . 1/3
Per test timeout (in second): I 10 Murnber of checksiTests with errors: A
Timeaut: 0
Stopped tests: o
Start St & | Shap Gurrent |
Test Completed Time Remaining: 0:0:0 T
Resutts | File: I Line I Calutn I Error I # Testcases Failed |fﬂ
_log exarmple .o |114 |1B |IDP llegal Dereferen...|3 I;

The updated results show fewer failed tests, allowing you to focus in on
any actual code problems.

Saving and Reusing Your Configuration

You can save your Automatic Orange Tester preferences and variable ranges
for use in future dynamic testing.

9-60

Automatically Testing Orange Code

To save your configuration:

1 Select File > Save.

2 Enter an appropriate name and click Save.
Your configuration is saved in a . tgf file.

To open a configuration from a previous verification:

1 Select File > Open.

2 Select the appropriate .tgf file, then click Open.
The configuration is opened.

When you open a previously saved configuration, the Log window displays
any differences in the configuration files. For example:

e [f a variable does not exist in the new configuration, a warning is displayed.

e [f the ranges for a variable are no longer valid (if the variable type changes,
for example), a warning is displayed and the range is changed to the largest
valid range for the new data type (if possible).

Exporting Data Ranges for PolySpace Verification

Once you have set the data ranges for your variables, you can export them to a
Data Range Specifications (DRS) file for use in future PolySpace verifications.
This allows you to reduce the number of orange checks identified in the
PolySpace Viewer.

To export your data ranges:

1 Set the appropriate values for each variable you want to specify.
2 Select File > Export DRS.

3 Enter an appropriate name and click Save.

The DRS file is saved.

9-61

9 Managing Orange Checks

9-62

For information on using a DRS file for PolySpace verifications, see “Specifying
Data Ranges for Variables and Functions (Contextual Verification)” on page
4-34.

Configuring Compiler Options

On UNIX, Solaris, or Linux systems, you must configure your compiler and
linker options before using the Automatic Orange Tester.

Note On Windows systems, the compiler options cannot be modified. You
can only configure the library dependencies.

To set compiler and linker options:
1 Open the Automatic Orange Tester, as described above.
2 Select Options > Configure.

3 The Preferences dialog box opens.

Automatically Testing Orange Code

Preferences

CPolyEpace\Poly Space_CommoniAutamsaticOrange Testerlcobinilcs exe
_ PolySpace\PolySpace CommonldutomaticOrangeTesterlcciinclude

ZPolySpacePolySpace_CommonldutomaticOrangeTester oo binlocink exe
[\PolySpace\PolySpace_CommonlAutomaticCrangeTestericcilib
- alySpace'PolySpace_CommonidutomaticCrange Testercoilibiibe lib =

4 Set the appropriate parameters for your compiler.

9-63

9 Managing Orange Checks

Technical Limitations

The Automatic Orange Tester has the following limitations:

e “Unsupported PolySpace Options” on page 9-64
® “Options with Limitations” on page 9-64
e “Unsupported C Language Constructions” on page 9-64

Unsupported PolySpace Options

The following options are not supported when you select
-prepare-automatic-tests

® -entry-points

e -dialect

e -ignore-float-rounding

® -div-round-down

® -char-is-16its

® -short-is-8bits

® -respect-types-in-globals

® -respect-types-in-fields

In addition, Global asserts in the code of the form Pst_Global Assert(A,B)
are not supported with the Automatic Orange Tester.

Options with Limitations

The following options cannot take specific values when you select
-prepare-automatic-tests

e -target [tms320c3c | sharc21x61]

e .data-range-specification (in global assert mode)

Unsupported C Language Constructions
The code verification stops when any of the following characteristics are met:

9-64

Automatically Testing Orange Code

e ANSI C99 long long and long double types are unsupported for Windows
systems

e (Calls to following routines are unsupported:

= va_start

= va_arg
= va_end
va_copy
setjmp
sigsetjmp
longjmp
siglongjmp

The following C language constructions are ignored:

® The endianness of the target is not managed. The tests are performed as if
the user-defined target has the same endianness as the hardware on which
the Automatic Orange Tester is running

e (Calls to the following routines are ignored:

= signal

= sigset

= sighold

= sigrelse
sigpause
sigignore
sigaction
= sigpending
sigsuspend
= sigvec

= sigblock

9-65

9 Managing Orange Checks

9-66

sigsetmask
sigprocmask
siginterrupt
srand
srandom
initstate

setstate

Day to Day Use

® “PolySpace In One Click Overview” on page 10-2
e “Using PolySpace In One Click” on page 10-3

l 0 Day to Day Use

PolySpace In One Click Overview

Most developers verify the same files multiple times (writing new code, unit
testing, integration), and usually need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
PolySpace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to PolySpace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

Sek active project 3

Open active project - New_Project

Viewer

Launcher

£ 15

Spoaler
Help 3

Exit

BER EET

Send To d | Compressed (zipped) Folder
Cuk [ﬁ} Deskkop (create shortout)
Copy (# Macromedia FreeHand My
Create Shorkcut | Mail Recipient
Delete I2) Move ko SendTo
Feenams [} My Documents
Properties FalySpace

ﬁ 31 Floppy (A:)

ok DWDJCD-RW Drive (2:)

10-2

Using PolySpace® In One Click

Using PolySpace In One Click

In this section...
“PolySpace In One Click Workflow” on page 10-3

“Setting the Active Project” on page 10-3

“Launching Verification” on page 10-5

“Using the Taskbar Icon” on page 10-9

PolySpace In One Click Workflow

Using PolySpace In One Click involves two steps:
1 Setting the active project.
2 Sending files to PolySpace software for verification.

Setting the Active Project

The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results folder from

the project.
To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

The context menu appears.

10-3

l 0 Day to Day Use

Set active project k

Open ackive project - Example_Project

Viewer

Launcher

7 & T

Spoaler
Help »

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

10-4

Using PolySpace® In One Click

Please set an active project. d |

Laak i I&} polvzpace_project j 4= fji v

includes
resulks
S0UFCES

Cia example.cfg

L

File name: || j | Open I
Files af type: IF'DI_I,ISpace configuration files j Cancel |
p

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

Note You can also set the active project by right-clicking on a project file
(.cfg or .dsk) file and selecting Send To > PolySpace.

Launching Verification
PolySpace in One Click allows you to send multiple files to PolySpace software
for verification.

10-5

l 0 Day to Day Use

To send a file to PolySpace software for verification:

1 Navigate to the folder containing the source files you want to verify.
2 Right-click the file you want to verify.
The context menu appears.

3 Select Send To > PolySpace.

Marme | Size | Tvpe
[- | SKS CFie
Open
Edit

Cpen with WordPad
=2 Scan for wiruses, .,

Dpen Wikh »

&3l WinZip 3
Send To [#] Compressed (zipped) Folder
uk [ﬁ’ Desktop (create shorbout)
apy [Fax Destination via RightFax
reate Shortouk (# Macromedia FreeHand M
Delete

| Mail Recipient
Rename
,D MMy Documents

Properties FalySpace

4L 314 Floppy (A2)

The PolySpace basic settings dialog box appears.

10-6

Using PolySpace® In One Click

E PolySpace basic settings [C] ;lglﬂ

Settings

Precision |02

Passes [Pass2 (Saftware Safety Analysis level 2)

Results folder |C:"-..PonSpace"-ponspace _project\results

Verification Mode Settings

Function called before main |

Main generator write variables INone

Scope

C\PolySpacec_polyspace_project ‘sourcesexample.c

[1]+

[Send to PolySpace Server D) Smrtl @Camfﬂ |

10-7

l 0 Day to Day Use

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.
5 Leave the default values for the other parameters.
6 Click Start.

The verification starts and the verification log appears.

10-8

Using PolySpace® In One Click

E:"-.,pulyspace _projecti results Example_Project.log

HEE O @ -

[FFuRchon Fandom_tiost 1= pUre . REtUFnE an ntisized valle.
Generating the Main ...

Zenerating call to function: RTE

Doing code transformations .

£33

=5 C zources verification done
E++4

[[Endling at: ksy 13, 2008 53220
|I=er time for suif: 54real, 5.4u + 0=
- |Zenerating remate file

. [Done

=er time for polyspace-c: 5.8real, 5.5u + Oz
EE+3

*** End of PolySpace Verifier analysis

£33

Ldding the analysis to the gqueue ..
Tranzfering the archive to the server ..

Tranzfer completed.
Aralysiz D1

The analysiz has heen gqueusad. You may followy ts progress using the spoaler.

al |

|The analyziz haz been succeszsfully done

Using the Taskbar Icon

The PolySpace in One Click Taskbar icon allows you to access various
software features.

10-9

l 0 Day to Day Use

10-10

Set active project 3

Open active praject - New_Project

Yigwer

Launcher

£ & 7

Spooler
Help 3

Ezxit

[« |[]% B 431 pM

Click the PolySpace Taskbar Icon, then select one of the following options:

® Set active project — Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working folder.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

) EBrowse ... | Set active project »
O ki jeck - M Project
Zi\PalySpaceimy_project.cfg REM ACLvE project - Hew_Frojec
Z:\PolySpacelc_project.chg | Viewer
Ci\PolySpace\cpp_project.cfg E Launcher
Z:\PolySpacelnew_project.cfg E Spoaler
Z:\PolySpaceloneclick. cfg Help »
Exit =

|“Iﬂ

Using PolySpace® In One Click

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and paths of standard and specific
headers. It does not affect the precision of a verification or the results
folder.

Viewer — Opens the PolySpace viewer. This allows you to review
verification results in the standard graphical interface. In order to load
results into the viewer, you must choose a verification to review in the
Verification Log window.

Launcher — Opens the PolySpace Launcher. This allows you to launch a
verification using the standard PolySpace graphical interface.

Spooler — Opens the PolySpace Spooler. If you selected a server
verification in the “PolySpace Preferences” dialog box, the spooler allows
you to follow the status of the verification.

10-11

l 0 Day to Day Use

10-12

MISRA Checker

® “PolySpace MISRA Checker Overview” on page 11-2

¢ “Setting Up MISRA C Checking” on page 11-4

¢ “Running a Verification with MISRA C Checking” on page 11-11
e “Rules Supported” on page 11-16

e “Rules Partially Supported” on page 11-43

¢ “Rules Not Checked” on page 11-54

11 MISRA® Checker

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.?

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. T

he MISRA checker can check nearly all of the 141 MISRA C:2004 rules. In
addition to the MISRA rules, the software checks one additional rule (15.0),
to improve precision.

These rules are divided in three categories:

® 102 required and advisory rules fully supported. PolySpace software can
check all these rules without any limitations. See “Rules Supported” on
page 11-16.

® 18 required and advisory rules partially supported. PolySpace software can
check all these rules with some limitations. These limitations are described
in the associated “Note” paragraph for each rule. See “Rules Partially
Supported” on page 11-43.

e 22 required and advisory rules which cannot be verified by PolySpace
software. These rules cannot be verified because they are outside the scope
of PolySpace verification. They may concern documentation, dynamic
aspects or functional aspects of MISRA rules. These rules are not checked.
The “comment” column details the reason. See “Rules Not Checked” on
page 11-54.

9. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-2

http://www.misra-c.com/

PolySpace® MISRA® Checker Overview

Note Every violation, warning or error, will be written in the log file at
compilation time of a PolySpace verification, except for rules 9.1 (NIV checks),
12.11 (OVFL check using -detect-unsigned-overflows), 13.7 (gray checks),
14.1 (gray checks), 16.2 (Call graph) and 21.1 (all runtime errors).

You will find a set of required and advisory MISRA rules in “Applying Coding
Rules to Reduce Orange Checks” on page 9-15 which can have direct or
indirect impact on the PolySpace selectivity (reliability percentage).

Note If any of the input source files do not compile, MISRA C checking will
be incomplete.

11-3

11 MISRA® Checker

Setting Up MISRA C Checking

114

In this section...

“Checking Compliance with MISRA C Coding Rules” on page 11-4
“Creating a MISRA C Rules File” on page 11-5

“Excluding Files from the MISRA C Checking” on page 11-7
“Configuring Text and XML Editors” on page 11-8

“Commenting Code to Indicate Known Rule Violations” on page 11-9

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

The Compliance with standards options appear.
2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and folders to ignore,
appear.

Setting Up MISRA C® Checking

Mame Value

Internal name

Analysis options

[+--General

- Target/Compilation

E--Compliance with standards

----- Code from DOS or Windows filesystem v -dos

[+-Embedded assembler
B-Strict - -strict
[#--Permissive - -peErmissive
El-Check MISRA C rules v

----- MISRA C rules configuration C:'\PolySpace'p| ... |-misra2

----- Files and folders to ignore C:\Polyspace'p| ... |Hncludes-to-ignore
[#--Keil TAR. support default - -dialect

[+-PolySpace inner settings

[+-Precision,/Scaling

FH-Multitasking

4 Specify which MISRA C rules to check and which, if any, files to exclude

from the checking.

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

Opening a New Rules File
To open a new rules file:

1 Click the button I—I to the right of the Rules configuration option.

A window for opening or creating a MISRA C rules file appears.

2 Select File > New File.

A table of rules appears.

11-5

11 MISRA® Checker

11-6

Rules Errar I WNarning Off

MISEL C rules

I—Numl::ner af rules by mode 7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

4 Character sets

Identifiers

Types

I-' Constants

8 Declarstions and definitions

9 Intialization

0 Arithmetic type conversions

1 Painter type conversions

2 Exrezsions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l B Functions
—16.1 Functionz shall nat be defined with variable numbers of arguments. f" - o
—16.2 Functions shall nat call themselves, either directly or indirectly. f" - o
—16.3 ldentifiers shall he given for all of the parameters in & function prototy o - f"
—16.4 The identifiers used in the declarstion and defintion of 2 function shall © 8 =
—16.2 Functions wvith ho parameters shall be declared with parameter type f" f" o
—16.6 The number of arguments passed to a function shall match the numbe f" f" o
—I16.7 & pointer parameter in a function protatype should be declared as poi f" « g
—16.5 Al exit paths from a function with non-void return type shall have an ¢ r ':H o
—16.9 & function identifier shall only be used with either a preceding & or f" f" o
—1 G610 If & function returns error information, then that error information sha © © g

=T Pointer and arrays
—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs © © g
—17.2 Pointer subtraction shall only be applied to pointers that address elems © © g
—17.3 =, == = == shal not be applied to pointer types except where they po © © g
—17.4 Array indexing shall be the only allowed form of poirter arithmetic. f" o f"
—17.5 The declaration of objects should contain no more than 2 levels of poi f" f" o
—17 6 The address of an ohject with automstic storage shall not be azsigne r i "

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

Setting Up MISRA C® Checking

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and folders to ignore option.

2 Click the folder icon.

=]

The Select a file or folder to include dialog box appears.

3 Select the files or folders (such as include files) you want to ignore.

11-7

11 MISRA® Checker

11-8

4 Click OK.

The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

Configuring Text and XML Editors

Before you check MISRA rules, you should configure your text and XML
editors in the Launcher. Configuring text and XML editors in the Launcher
allows you to view source files and MISRA reports directly from the MISRA-C

log in the launcher.
To configure your text and . XML editors:
1 Select Edit > Preferences.
The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

Setting Up MISRA C® Checking

Preferences

| Generic targets |

X

~XML editor configuration
Specify the full path to a XML editor or use the browse button.

¥ML Editor: IC:'-.F‘ru:ugram Files\MSOffice \Office 12\EXCEL.EXE _}l

~Text editor configuration

specify the full path to a text editor or use the browse button.

Text Editar: IC: \Program Files\Windows NT\Accessories \wordpad. exe _,i'l

Specify the command line arguments for the text editor,

Arguments: ISFILE

The following macros can be used SFILE, SLIME, SCOLUMM

QK Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports. For example:
C:\Program Files\MSOffice\Office12\EXCEL.EXE

4 Specify a Text editor to use to view source files from the Launcher logs.
For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe
5 Specify command line arguments for the text editor. For example:
$FILE

6 Click OK.

Commenting Code to Indicate Known Rule Violations

You can place comments in your code that inform PolySpace software of
known or acceptable coding rule violations. The software uses the comments
to highlight, in the Launcher, errors or warnings related to the coding rule
violations. Using this functionality, you can:

11-9

11 MISRA® Checker

® Hide known coding rule violations while analyzing new coding rule
violations.

¢ Inform other users of known coding rule violations.

When the verification is complete, or stops because of a compilation error, you
can view all coding rule violations in the Launcher by clicking MISRA C.

Compile | Filter || [~ Hide justifed violated rules i

MISRA C

= | Status Rule File Line Col Justified | Acronym | User Acronym Justification

_E Stats ? 17.4 example.c 114 21 |

[Full Log ? 17.4 example.c 118 14

—] 16.3 include.h 34 28 Yes A known coding rule violation J
? 174 main.c 18 7
? 19.10 single_file_private.h [37 0
? 19.10 |single_file_private.h [38 0 hd

In the Acronym, User Acronym and Justification columns, the
information that you provide within your code comments is now visible. In
addition, the Justified cell contains Yes.

To hide coding rule violations that you annotate, select the Hide justified
violated rules check box.

For more information, see “Annotating Code to Indicate Known Coding Rule
Violations” on page 5-34.

11-10

Running a Verification with MISRA C® Checking

Running a Verification with MISRA C Checking

In this section...

“Starting the Verification” on page 11-11
“Examining the MISRA C Log” on page 11-12
“Opening MISRA-C Report” on page 11-14

Starting the Verification

When you run a verification with the MISRA C option selected, the verification
checks most of the MISRA C rules during the compile phase.!®

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

1 Click the Start button ﬂl

2 If you see a caution that PolySpace software will remove existing results
from the results folder, click Yes to continue and close the message dialog
box.

If the verification fails because of MISRA C violations. A message dialog
box appears.

10. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-11

11 MISRA® Checker

x

@ Werification process Failed

3 Click OK.

Note If any of the input source files do not compile, MISRA C checking will
be incomplete.

Examining the MISRA C Log
To examine the MISRA C violations:

1 Click the MISRA-C button in the log area of the Launcher window.

A list of MISRA C violations appear in the log part of the window.

Compile | Filter | I Hide justifed violated rules i

2 MISRA C
Status | Rule File Line | Col | Justified | Acronym | User Acronym | Justification
@ st 16.3 |ndude.h |33 |28

|

@FUIILD«; E 17.4 |example.c |37 7
| L.
y

o

o

17.4 |example.c [114 |21
17.4 |example.c [118 |14

o

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

11-12

Running a Verification with MISRA C® Checking

Compile | Filter I [~ Hide justifed violated rules i
21 MISRA C
Status Rule File Line Col Justified Acronym User Acronym Justification
@ 3
@ Full Log 9 17.4 example.c a7 7
_ r 17.4 example.c 114 21
? 17.4 example.c 118 14
Detail
Bule: 1&6.3 (Error): Identifiers shall be given for all of the parameters in a function prototype declaration.

File: C:\Po

Source code

lySpace\polyspace_projecthincludes‘include.h line 33 (column 28)

In this example, the log reports a violation of rule 16.3. A function
prototype declaration in include.h is missing an identifier.

3 Right click the row containing the violation, then select Open Source File.

Justified

L .

- exampl %= Open Source File

N 4 17.4 exampl Add Pre-Justification to Clipboard
? 174 exampl Open MISRA-C Report

%4 Configure Editor

The appropriate file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 11-8.

4 Correct the MISRA violation and run the verification again.

11-13

11 MISRA® Checker

11-14

Opening MISRA-C Report
After you check MISRA rules, you can generate an XML report containing all
the errors and warnings reported by the MISRA-C checker.

Note You must configure an XML editor before you can open a MISRA-C
report. See “Configuring Text and XML Editors” on page 11-8.

To view the MISRA-C report:

1 Click the MISRA-C button in the log area of the Launcher window.

A list of MISRA C violations appear in the log part of the window.

2 Right click any row in the log, and select Open MISRA-C Report.

exampl
17.4 exampl
17.4 exampl

%= Open Source File
Add Pre-Justification to Clipboard
Open MISRA-C Report

%4 Configure Editor

The report opens in your XML editor.

Running a Verification with MISRA C® Checking

Cin \d9-© ' = Book2 - Microsoft Excel Table Tools =aERt
S)) i
‘ Home l Insert Page Layout Formulas Data Review View Add-Ins Acrobat Design @ - =7 X
E * Calibri E‘Wrap Text General = ﬁ @ Bt - ﬂ [ﬁ
B I Delete - -
Paste =i Merge & Center Conditional Format — Cell || . sort & Find &
7 EZ 2 Formatting ~ as Table ~ Styles - @Formatv A7 Filter~ Select—
Clipboard ™= Alignment Mumber Styles Cells Editing
Nameld Modeﬂ
16.3 required error C: \PoIvSpaoe\polyspaoeJ)rOJect\mcludes\lnclude h 33 0| Identlflers shall be given for all of the parameters in a function protc
17.4 required warning example.c 97 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 114 0 | Array indexing shall be the only allowed form of pointer arithmetic.
17.4 required warning example.c 118 0 | Array indexing shall be the only allowed form of pointer arithmetic.

11-15

11 MISRA® Checker

Rules Supported

In this section...

“Language Extensions” on page 11-17
“Character Sets” on page 11-17

“Identifiers” on page 11-18

“Types” on page 11-19

“Constants” on page 11-20

“Declarations and Definitions” on page 11-20
“Initialization” on page 11-23

“Arithmetic Type Conversion” on page 11-23
“Pointer Type Conversion” on page 11-27
“Expressions” on page 11-28

“Control Statement Expressions” on page 11-31
“Control Flow” on page 11-32

“Switch Statements” on page 11-34
“Functions” on page 11-35

“Pointers and Arrays” on page 11-36
“Structures and Unions” on page 11-36
“Preprocessing Directives” on page 11-37
“Standard Libraries” on page 11-40

“runtime Failures” on page 11-42

11-16

Rules Supported

Language Extensions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
2.2 source code shall only use /* | C++ comments shall not be | C++ comments are handled
*/ style comments used. as comments but lead to a
violation of this MISRA rule
2.3 The character sequence /* The character sequence /* This rule violation is also
shall not be used within a shall not appear within a raised when the character
comment comment. sequence /* inside a C++
comment.
Character Sets
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
4.1 Only those escape sequences | \<character> is not an ISO
which are defined in the C escape sequence
ISO® C standard shall be Only those escape
used. sequences which are
defined in the ISO C
standard shall be used.
4.2 Trigraphs shall not be used. | Trigraphs shall not be used. | Trigraphs are handled and

converted to the equivalent
character but lead to a
violation of the MISRA rule

11-17

11 MISRA® Checker

Identifiers

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

5.1

Identifiers (internal and
external) shall not rely on
the significance of more
than 31 characters

Identifier XX’ should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2

Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide
that identifier.

¢ Local declaration of XX is
hiding another identifier.

¢ Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3

A typedef name shall be a
unique identifier

{ typedef name }'%s’ should
not be reused. (already
used as { typedef name } at
%s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4

A tag name shall be a
unique identifier

{tag name }'%s’ should not
be reused. (already used as
{tag name } at %s:%d)

warning when a tag name is
reused as another identifier
name

5.5

No object or function
identifier with a static
storage duration should be
reused.

{ static identifier/parameter
name }'%s’ should not be
reused. (already used as {
static identifier/parameter
name } at %s:%d)

warning when a static
name is reused as another
identifier name

11-18

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
5.6 No identifier in one name {member name }'%s’ should | warning when a idf in a
space should have the same | not be reused. (already namespace is reused in
spelling as an identifier in | used as { member name } at | another namespace
another name space, with %s:%d)
the exception of structure
and union member names.
5.7 No identifier name should {identifier}'%s’ should not warning on other conflicts
be reused. be reused. (already used as | (including member names)
{ identifier} at %s:%d)
Types
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
6.1 The plain char type shall Only permissible operators | There is a warning when a
be used only for the storage | on plain chars are’=’",’=="or | plain char is used with an
and use of character values | ’!'=" operators. operator other than =, == or
1=
6.3 typedefs that indicate size typedefs that indicate size | No warning is given in

and signedness should be
used 1n place of the basic

types

and signedness should be
used in place of the basic

types.

typedef definition. There is
no exception on bitfields.

11-19

11 MISRA® Checker

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

6.4

Bit fields shall only be
defined to be of type
unsigned int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5

Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int

shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <=1 (if Rule
6.4 1s violated).

Constants

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

7.1

Octal constants (other
than zero) and octal escape

sequences shall not be used.

® (QOctal constants other
than zero and octal
escape sequences shall
not be used.

® QOctal constants (other
than zero) should not be
used.

® (Qctal escape sequences
should not be used.

Declarations and Definitions

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

8.1

11-20

Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

e Function XX has no
complete prototype
visible at call.

Prototype visible at call
must be complete.

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
® Function XX has no
prototype visible at
definition.

8.2 Whenever an object or Whenever an object or
function is declared or function is declared or
defined, its type shall be defined, its type shall be
explicitly stated explicitly stated.

8.4 If objects or functions During link phase, errors
are declared more than e If objects or functions are converted into warnings
once their types shall be are declared more than with -permissive-1link
compatible. once their types shall be | option.

compatible. Cannot be turned Off.
® Global declaration

of XX’ function has

incompatible type with

its definition.
® Global declaration

of XX’ variable has

incompatible type with

its definition.

8.5 There shall be no definitions Tentative of definitions are
of objects or functions in a ® Object 'XX’ should not be | considered as definitions.
header file defined in a header file.

® Function XX’ should not
be defined in a header
file.

8.6 Functions shall always be Function XX’ should be

declared at file scope.

declared at file scope.

11-21

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
8.9 Definition: An identifier Tentative of definitions
with external linkage shall | ® Procedure/Global are considered as
have exactly one external variable XX multiply definitions, No warning
definition. defined. on undefined objects with
e Forbidden multiple ~allow-undef-variables
: g option, No warning on
tentative of definition for dofined bol
object XX. predefined symbols.
® Global variable has
multiples tentative of
definitions
8.10 | All declarations and Function/Variable XX Not checked if
definitions of objects or should have internal -main-generator option is
functions at file scope shall | linkage. set. Assumes that 8.1 is not
have internal linkage unless violated. No warning if 0
external linkage is required uses.
8.11 The static storage class static storage class specifier
specifier shall be used in should be used on internal
definitions and declarations | linkage symbol XX.
of objects and functions that
have internal linkage
8.12 When an array is declared | Array XX has unknown

with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

size.

11-22

Rules Supported

Initialization
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
9.1 All automatic variables Checked during code
shall have been assigned a verification.
velue beltor bebng vosd. Violations displayed as NIV
checks in the verification
results.
9.2 Braces shall be used to Braces shall be used to
indicate and match the indicate and match the
structure in the nonzero structure in the nonzero
initialization of arrays and | initialization of arrays and
structures. structures.
9.3 In an enumerator list, the In an enumerator list, the
= construct shall not be = construct shall not be
used to explicitly initialize | used to explicitly initialize
members other than the members other than the
first, unless all items are first, unless all items are
explicitly initialized. explicitly initialized.
Arithmetic Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
10.1 The value of an expression

of integer type shall not be
implicitly converted to a
different underlying type if:

® it is not a conversion to a
wider integer type of the
same signedness, or

® the expression is complex,
or

¢ Implicit conversion
of the expression of
underlying type ?? to
the type ?? that is not a
wider integer type of the
same signedness.

¢ Implicit conversion of one
of the binary operands

1 ANSI C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

11-23

11 MISRA® Checker

11-24

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
L whose underlying types
* the expression is not are 22 and ?? 2 An expression of bool or
constant and is a function o _ enum types has int as
argument, or ¢ Implicit conversion of underlying type.
. th L . the binary right hand
o typfe ?? to ?? that is not signed or unsigned
an integer type. underlying type
¢ Implicit conversion of the (dependlng. ol Po.lySpace
binary left hand operand target configuration or
of underlying type ?? to option setting).
?? that is not an integer 4 The underlying type
type. . .
of a simple expression
¢ Implicit conversion of of struct.bitfield is the
the binary right hand base type used in the
operand of underlying bitfield definition, the
type ?? to ?? that is not bitfield width is not
a wider integer type of token into account and it
the same signedness or assumes that only signed
Implicit conversion of | unsigned int are used
the binary ? left hand for bitfield (Rule 6.4).
operand of underlying
type ?? to ??, but it is a
complex expression.
10.1 ¢ Implicit conversion
(cont.) of complex integer

expression of underlying
type ?? to ??.

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? in function return

whose expected type is
29

Rules Supported

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? as argument
of function whose
corresponding parameter
type is ??.

10.2

The value of an expression
of floating type shall not
be implicitly converted to a
different type if

® it 1s not a conversion to a
wider floating type, or

¢ the expressionis complex,
or

® the expression is a
function argument, or

® the expression is a return
expression

¢ Implicit conversion of
the expression from ??
to ?? that is not a wider
floating type.

¢ Implicit conversion of
the binary ? right hand
operand from ?? to
??, but it is a complex
expression.

¢ Implicit conversion of
the binary ? right hand
operand from ?? to
?? that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from ??
to ??, but it is a complex
expression.

¢ Implicit conversion
of complex floating
expression from ?? to ??.

¢ Implicit conversion of
floating expression of ??
type in function return

whose expected type is
29

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or
T2 =T1.

11-25

11 MISRA® Checker

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

¢ Implicit conversion of
floating expression of
?? type as argument
of function whose

corresponding parameter

type is ??.

11-26

10.3

The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type ?? may
only be cast to narrower
integer type of same
signedness, however the
destination type is ??.

e ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied
on the unsigned version
of base types.

® An expression of bool or
enum types has int as
underlying type.

¢ Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

¢ The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
used for bitfield (Rule
6.4).

10.4 The value of a complex Complex expression of ?? ANSI C base types order
expression of float type may | type may only be cast to (float, double) defines that
only be cast to narrower narrower floating type, T1 is narrower than T2 if
floating type however the destination T2 1s on the right hand of

type is ??. T1 or T2 = T1.

10.5 If the bitwise operator ~ and | Bitwise [<<|~] is applied
<< are applied to an operand | to the operand of
of underlying type unsigned | underlying type [unsigned
char or unsigned short, the | char|unsigned short], the
result shall be immediately | result shall be immediately
cast to the underlying type | cast to the underlying type.
of the operand

10.6 The “U” suffix shall be No explicit ‘U suffix on
applied to all constants of constants of an unsigned
unsigned types type.

Pointer Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

11.1 Conversion shall not be Conversion shall not be Casts and implicit
performed between a performed between a conversions involving a
pointer to a function and pointer to a function and function pointer
any type other than an any type other than an
integral type integral type.

11.2 Conversion shall not be Conversion shall not be There is also a warning on

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a

qualifier loss

11-27

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
object type or a pointer to object type or a pointer to
void void.

11.3 A cast should not be A cast should not be Exception on zero constant.
performed between a performed between a Extended to all conversions
pointer type and an integral | pointer type and an integral
type type.

11.4 A cast should not be A cast should not be Extended to all conversions
performed between a performed between a
pointer to object type and pointer to object type and a
a different pointer to object | different pointer to object
type. type.

11.5 A cast shall not be A cast shall not be Extended to all conversions
performed that removes performed that removes
any const or volatile any const or volatile
qualification from the qualification from the
type addressed by a pointer | type addressed by a pointer

Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.1 Limited dependence Limited dependence
should be placed on C’s should be placed on C’s
operator precedence rules operator precedence rules
in expressions in expressions

12.3 The sizeof operator should | he size of operator should No warning on volatile
not be used on expressions | not be used on expressions | accesses and function calls
that contain side effects. that contain side effects.

12.4 The right hand operand of | The right hand operand of | No warning on volatile

a logical && or | | operator
shall not contain side
effects.

a logical && or | | operator
shall not contain side
effects.

accesses and function calls.

11-28

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.5 The operands of a logical During preprocessing,
&& or || shall be ¢ operand of logical && is | violations of this rule are
primary-expressions. not a primary expression | detected on the expressions
o e of logreal [9 in #if directives.
not a primary expression | Allowed exception on
¢ The operands of a logical ?sslo I(:ll?tllvlelz (@a&&b &&c),
&& or | | shall be . ok
primary-expressions.
12.6 Operands of logical "the operand of a logical

operators (&&, | | and

1) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, | | or!).

® Operand of ’!" logical
operator should be
effectively Boolean. Left
operand of '%s’ logical
operator should be
effectively Boolean.

¢ Right operand of "%s’
logical operator should
be effectively Boolean.

® Boolean should not be
used as operands to
operators other than

’&&7, al |,OI' 7!a'

operator should be a
Boolean". As there are no
Boolean in "C" but as the
standard assumes it, some
operator return Boolean
like expression (var == 0).
Example:

unsigned char flag; if
(!flag) raises the rule:

the operand of "!" 1s "flag".
And "flag" is not a Boolean

but an unsigned char.
To be 12.6 MISRA

compliant, the code need to

be written like this:

if (!(flag != 0))
or if (flag == 0)

11-29

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.7 Bitwise operators shall The underlying type for
not be applied to operands | ® [~/Left Shift/Right an integer used in a
whose underlying type is shift/&] operator applied | re-processor expression is
signed on an expression whose | signed when :
underlying type is signed.
¢ Bitwise ~ on operand of 1 dc?es s e & o @ U
. . suffix
signed underlying type
?72. ® it is small enough to
e fit 1nk‘:0 a 64 bits signed
hand operand of signed number
underlying type ??.
* Bitwise [& | 7] on two
operands of s
12.8 The right hand operand of The numbers that

a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

¢ shift amount is negative

¢ shift amount is bigger
than 64

* Bitwise [<<>>] count out
of range [0 ..X] (width of
the underlying type ?? of
the left hand operand -
1)..

are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check 1s also extended
onto bitfields with the field
width or the width of the
base type when it is within
a complex expression

11-30

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.9 The unary minus operator The underlying type for
shall not be applied to ¢ Unary - on operand of an integer used in a
an expression whose unsigned underlying type | re-processor expression is
underlying type is unsigned. 7. signed when:

e Mi t lied .
R S ¢ it does not have auor U
to an expression whose .
. . suffix

underlying type is

unsigned ¢ it is small enough to
fit into a 64 bits signed
number

12.10 | The comma operator shall | The comma operator shall
not be used. not be used.

12.13 | The increment (++) and The increment (++) and warning when ++ or --
decrement (--) operators decrement (--) operators operators are not used
should not be mixed with should not be mixed with alone.
other operators in an other operators in an
expression expression

Control Statement Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

13.1 Assignment operators shall | Assignment operators shall
not be used in expressions | not be used in expressions
that yield Boolean values. that yield Boolean values.

13.2 Tests of a value against zero | Tests of a value against zero | No warning is given on
should be made explicit, should be made explicit, integer constants. Example:
unless the operand is unless the operand is if (2)
effectively Boolean effectively Boolean

13.7 Boolean operations whose Boolean operator '%s’ Done by PolySpace (gray

results are invariant shall
not be permitted

should not have invariant

Checks). It is also checked
during compilation on

11-31

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
result. (Result is always comparison between with a
‘true/false’). least one constant operand.
Cannot be Off.
Control Flow
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.1 There shall be no Done by PolySpace (gray
unreachable code. checks).
Cannot be Off.
14.2 All non-null statements
shall either have at lest ¢ All non-null statements
one side effect however shall either:
flxe(:lited},l or cause control e have at lest one side
ow to change effect however executed,
or
® cause control flow to
change
14.4 The goto statement shall The goto statement shall
not be used. not be used.
14.5 The continue statement The continue statement
shall not be used. shall not be used.
14.6 For any iteration statement | For any iteration statement

there shall be at most one
break statement used for
loop termination

there shall be at most one
break statement used for
loop termination

11-32

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.7 A function shall have a A function shall have a
single point of exit at the single point of exit at the
end of the function end of the function
14.8 The statement forming the
body of a switch, while, do ¢ The body of a do while
while or for statement shall statement shall be a
be a compound statement compound statement.
¢ The body of a for
statement shall be a
compound statement.
¢ The body of a switch
statement shall be a
compound statement
14.9 An if (expression) construct
shall be followed by a ¢ An if (expression)
compound statement. construct shall be
The else keyword shall followed by a compound
be followed by either a statement.
comt[;i) un.(]jcl s;c attemen;c » OF ® The else keyword shall
another ij statemen be followed by either a
compound statement, or
another if statement
14.10 | All if else if constructs All if else if constructs

should contain a final else
clause.

should contain a final else
clause.

11-33

11 MISRA® Checker

Switch Statements

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
15.0 Unreachable code is switch statements syntax Warning on declarations or
detected between switch normative restrictions. any statements before the
statement and first case. first switch case.
Warning on label or jump
Note This is not a MISRA :zjl'fc‘}?eczz:n e Ibotly of
C2004 rule. '
On the following example,
the rule is displayed in the
log file at line 3:
1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4 case 1:
The code between switch
statement and first case
is checked as gray by
PolySpace verification. It
follows ANSI standard
behavior.
15.1 A switch label shall only A switch label shall only
be used when the most be used when the most
closely-enclosing compound | closely-enclosing compound
statement is the body of a statement is the body of a
switch statement switch statement
15.2 An unconditional break An unconditional break

statement shall terminate
every non-empty switch
clause

statement shall terminate
every non-empty switch
clause

11-34

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

15.3 The final clause of a switch | The final clause of a switch
statement shall be the statement shall be the
default clause default clause

15.4 A switch expression should | A switch expression should
not represent a value that | not represent a value that
is effectively Boolean is effectively Boolean

15.5 Every switch statement Every switch statement
shall have at least one case | shall have at least one case
clause clause

Functions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.1 Functions shall not be Function XX should not be
defined with variable defined as varargs.
numbers of arguments.

16.2 Functions shall not call Function %s should not call | Done by PolySpace software
themselves, either directly | itself. (Call graph in the viewer
or indirectly. gives the information).

PolySpace verification also
checks that partially during
compilation phase.

Cannot be Off.

16.3 Identifiers shall be given Identifiers shall be given Assumes Rule 8.6 is not
for all of the parameters for all of the parameters violated.
in a function prototype in a function prototype
declaration. declaration.

16.4 The identifiers used in the | The identifiers used in the | Assumes that rules 8.8,

declaration and definition of
a function shall be identical.

declaration and definition of
a function shall be identical.

8.1 and 16.3 are not
violated. All occurrences
are detected.

11-35

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.5 Functions with no Functions with no Definitions are also
parameters shall be parameters shall be checked.
declared with parameter declared with parameter
type void. type void.

16.8 All exit paths from a Missing return value for Warning when a non-void
function with non-void non-void function XX. function is not terminated
return type shall have an with an unconditional
explicit return statement return with an expression.
with an expression.

16.9 A function identifier shall Function identifier XX
only be used with either should be preceded by a &

a preceding &, or with a or followed by a parameter
parenthesized parameter list.
list, which may be empty.
Pointers and Arrays
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

17.5 A type should not contain A type should not contain
more than 2 levels of pointer | more than 2 levels of pointer
indirection indirection

Structures and Unions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

18.1 All structure or union types | All structure or union types
shall be complete at the end | shall be complete at the end
of a translation unit. of a translation unit.

18.4 Unions shall not be used Unions shall not be used.

11-36

Rules Supported

Preprocessing Directives

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.1 #include statements in a A message is displayed
file shall only be preceded | when a #include directive
by other preprocessors is preceded by other
directives or comments things than preprocessor
directives, comments,
spaces or “new lines”.
19.2 Nonstandard characters
should not occur in header | ® A message is displayed
file names in #include on characters’, \, " or
directives /* between < and > in
#include <filename>
* A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"
19.3 The #include directive shall Cannot be Off.
be followed by either a ® ‘“#include’ expects
<filename> or "filename" "FILENAME" or
sequence. <FILENAME>
e ‘“Hinclude_next’ expects
"FILENAME" or
<FILENAME>
19.5 Macros shall not be #defined
and #undefd within a block. | ® Macros shall not be
#defined within a block.
® Macros shall not be
#undef’d within a block.
19.6 #undef shall not be used. #undef shall not be used.

11-37

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.7 A function should be used | Message on all function-like
in preference to a function | macros expansions
like-macro.
19.8 A function-like macro shall Cannot be Off.
not be invoked without all ® arguments given to
of its arguments macro ‘<name>’
® macro ‘<name>" used
without args.
® macro ‘<name>" used
with just one arg.
® macro ‘<name>
used with too many
(<number>) args.
19.9 Arguments to a Macro argument shall not This rule is detected as
function-like macro shall look like a preprocessing violated when the #
not contain tokens that directive. character appears in a
look like preprocessing macro argument (outside
directives. a string or character
constant)
19.10 | In the definition of a Parameter instance shall be
function-like macro each enclosed in parentheses.
Instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
#.
19.11 | All macro identifiers in ‘<name>’ is not defined.

preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

11-38

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.12 | There shall be at most one | More than one occurrence
occurrence of the # or ## of the # or ## preprocessor
preprocessor operators in a | operators.
single macro definition.
19.13 | The # and ## preprocessor | Message on definitions
operators should not be of macros using # or ##
used operators
19.14 | The defined preprocessor ‘defined’ without an Cannot be Off.
operator shall only be used | identifier.
in one of the two standard
forms.
19.16 | Preprocessing directives directive is not syntactically
shall be syntactically meaningful.
meaningful even
when excluded by the
preprocessor.
19.17 | All #else, #elif and #endif Cannot be Off.

preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

e ‘Helif’ not within a
conditional.

e ‘Helse’ not within a
conditional.

e ‘Helif’ not within a
conditional.

e ‘#endif not within a
conditional.

e unbalanced #endif’.

® unterminated #if’
conditional.

* unterminated #ifdef’
conditional.

* unterminated #ifndef’
conditional.

11-39

11 MISRA® Checker

Standard Libraries

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.1 Reserved identifiers,
macros and functions in ® The macro ‘<name> shall
the standard library, shall not be redefined.
noz1 b; deglned, redefined or | The macro ‘<name> shall
undelined. not be undefined.

20.2 The names of standard Identifier XX should not be | In case a macro whose name
library macros, objects used. corresponds to a standard
and functions shall not be library macro, object or
reused. function is defined, the

rule that is detected as
violated is 20.1. Tentative
of definitions are considered
as definitions.

20.4 Dynamic heap memory In case the dynamic heap
allocation shall not be used. | ® The macro ‘<name> shall | memory allocation functions

not be used. are actually macros and the
e Identifier XX should not | M&cr 18 expagded i e
be used code, this rule is detected as
' violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno The error indicator errno Assumes that rule 20.2 is
shall not be used shall not be used not violated

20.6 The macro offsetof, in Assumes that rule 20.2 is

library <stddef.h>, shall not
be used.

¢ The macro ‘<name> shall
not be used.

e Jdentifier XX should not
be used.

not violated

11-40

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.7 The setjmp macro and the In case the longjmp function
longjmp function shall not The macro ‘<name> shall | is actually a macro and the
be used. not be used. macro is expanded in the
Identifier XX should not che, this rule is detected as
be used. violated. Assumes that rule
20.2 is not violated
20.8 The signal handling In case some of the signal
facilities of <signal.h> The macro ‘<name> shall | functions are actually
shall not be used. not be used. macros and are expanded
Identifier XX should not | ™ e il thl?’ G0l
be used. is detected as violated.
Assumes that rule 20.2 is
not violated
20.9 The input/output library In case the input/output
<stdio.h> shall not be used The macro ‘<name> shall | library functions are
in production code. not be used. actually macros and are
Identifier XX should not expapded i {513 cod.e, s
be used. rule is detected as violated.
Assumes that rule 20.2 is
not violated
20.10 | The library functions atof, In case the atof, atoi and

atoi and toll from library
<stdlib.h> shall not be used.

The macro ‘<name> shall
not be used.

Identifier XX should not
be used.

atoll functions are actually
macros and are expanded,
this rule is detected as

violated. Assumes that rule

20.2 is not violated

11-41

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.11 | The library functions abort, In case the abort, exit,
exit, getenv and system ® The macro ‘<name> shall | getenv and system functions
from library <stdlib.h> not be used. are actually macros and
shall not be used. e Tdentifier XX should not | &r¢ expanded, thls rule
be used is detected as violated.
’ Assumes that rule 20.2 is
not violated
20.12 | The time handling functions In case the time handling
of library <time.h> shall not | ® The macro ‘<name> shall | functions are actually
be used. not be used. macros and are expanded,
e Identifier XX should not | [is rule is detected as
be used violated. Assumes that rule
) 20.2 is not violated
runtime Failures
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
21.1 Minimization of runtime Done by PolySpace (runtime

failures shall be ensured by
the use of at least one of:

e gstatic verification
tools/techniques;

¢ dynamic verification
tools/techniques;

e explicit coding of checks
to handle runtime faults.

error checks).
Cannot be Off.

11-42

Rules Partially Supported

Rules Partially Supported

In this section...

“Environment” on page 11-43

“Language Extension” on page 11-44
“Declarations and Definitions” on page 11-45
“Expressions” on page 11-46

“Control Statement Expressions” on page 11-47
“Control Flow” on page 11-49

“Functions” on page 11-50

“Pointers and Arrays” on page 11-50

“Preprocessing Directives” on page 11-51

Environment
Rule Description
1.1 All code shall conform to ISO 9899:1990 “Programming

(Required) languages - C”, amended and corrected by ISO/IEC
9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

Messages in log:

e ANSI C does not allow #include_next’

¢ ANSI C does not allow macros with variable arguments list
e ANSI C does not allow #assert’

e ANSI C does not allow#unassert’

¢ ANSI C does not allow testing assertions

e ANSI C does not allow #ident’

e ANSI C does not allow #sccs’

¢ text following #else’ violates ANSI standard.

11-43

11 MISRA® Checker

Rule Description

text following #endif’ violates ANSI standard.

¢ text following #else’ or #endif violates ANSI standard.
e ANSI C90 forbids ’long long int’ type.

e ANSI C90 forbids 'long double’ type.

e ANSI C90 forbids long long integer constants.

¢ Keyword ’inline’ should not be used.

e Array of zero size should not be used.

¢ Integer constant does not fit within unsigned long int.

¢ Integer constant does not fit within long int.

Note All the supported extensions lead to a violation of this MISRA rule.
Standard compilation error messages do not lead to a violation of this
MISRA rule and remain unchanged. Can be turned to Off (see -misra2
option).

Language Extension

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
(Required)

Message in log:

® Assembly language shall be encapsulated and isolated.

11-44

Rules Partially Supported

Rule Description

Note no warnings if code is encapsulated in asm functions or in asm
pragma (only warning is given on asm statements even if it is encapsulated
by a MACRO). Can be turned to Off.

Declarations and Definitions

Rule Description

8.3 For each function parameter the type given in the

(Required) declaration and definition shall be identical, and the return
types shall also be identical.

Message in log:

¢ Definition of function XX’ incompatible with its declaration.

Note Assumes that rule 8.1 is not violated. The rule is restricted to
compatible types. Can be turned to Off

8.7 Objects shall be defined at block scope if they are only
(Required) accessed from within a single function

Message in log:

® (Object XX’ should be declared at block scope.

Note Restricted to static objects. Can be turned to Off

8.8 An external object or function shall be declared in one file
(Required) and only one file

11-45

11 MISRA® Checker

Rule Description

Message in log:
¢ Function/Object 'XX’ has external declarations in multiples files.

Note Restricted to explicit extern declarations (tentative of definitions
are ignored). Can be turned to Off

Expressions
Rule Description
12.2 The value of an expression shall be the same under any
(Required) order of evaluation that the standard permits.

Messages in log:

¢ The value of ‘sym’ depends on the order of evaluation.

¢ The value of volatile ‘sym’ depends on the order of evaluation because
of multiple accesses.

Note The expression is a simple expression of symbols (Unlike 1 = i++;
no detection on tab[2] = tab[2]++;). Rule 12.2 check assumes that no
assignment in expressions that yield a Boolean values (rule 13.1) and the
comma operator is not used (rule 12.10). Can be turned to Off.

12.11 Evaluation of constant unsigned expression should not lead
(Advisory) to wraparound.

No message.

11-46

Rules Partially Supported

Rule Description

Note This rule is partially implemented with the
-detect-unsigned-overflows option in PolySpace software. Concerning
possible preprocessing overflows, PolySpace preprocessor does not take
into account target basic types and considers always 32-Bit long int.
Cannot be ticked.

12.12 The underlying bit representations of floating-point values
(Required) shall not be used.

Message in log:
¢ The underlying bit representations of floating-point values shall not
be used.

Note Warning on casts with float pointers (excepted with void *). Can
be turned to Off.

Control Statement Expressions

Rule Description

13.3 Floating-point expressions shall not be tested for equality
(Required) or inequality.

Message in log:

¢ Floating-point expressions shall not be tested for equality or inequality.

Note Warning on directs tests only. Can be turned to Off.

13.4 The controlling expression of a for statement shall not
(Required) contain any objects of floating type

11-47

11 MISRA® Checker

Rule Description

Message in log:

® The controlling expression of a for statement shall not contain any
objects of floating type

Note If for index is a variable symbol, checked that it is not a float. Can
be turned to Off.

13.5 The three expressions of a for statement shall be concerned
(Required) only with loop control

Messages in log:
® 1st expression should be an assignment.

Bad type for loop counter (XX).
® 2nd expression should be a comparison.

® 2nd expression should be a comparison with loop counter (XX).

3rd expression should be an assignment of loop counter (XX).

3rd expression: assigned variable should be the loop counter (XX).

Note Checked if the for loop index (V) is a variable symbol; checked if V is
the last assigned variable in the first expression (if present). Checked if, in
first expression, if present, is assignment of V; checked if in 2nd expression,
if present, must be a comparison of V; Checked if in 3rd expression, if
present, must be an assignment of V. Can be turned to Off.

13.6 Numeric variables being used within a for loop for iteration
(Required) counting should not be modified in the body of the loop.

11-48

Rules Partially Supported

Rule Description

Message in log:
® Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

Note Detect only direct assignments if the for loop index is known and
if it is a variable symbol. Can be turned to Off.

Control Flow

Rule Description
14.3 All non-null statements shall either
(Required)

® have at lest one side effect however executed, or

¢ cause control flow to change

Message in log:

® A null statement shall appear on a line by itself

Note We assume that a’;’ is a null statement when it is the first character
on a line (excluding comments). The rule is violated when:

® there are some comments before it on the same line.
® there is a comment immediately after it

® there is something else than a comment after the ’;’ on the same line.

Can be turned to Off.

11-49

11 MISRA® Checker

Functions
Rule Description
16.6 The number of arguments passed to a function shall match
Required) the number of parameters.

Messages in log:
® Too many arguments to XX.

¢ Insufficient number of arguments to XX.

Note Assumes that rule 8.1 is not violated. Can be turned to Off.

Pointers and Arrays

Rule Description

17.4 Array indexing shall be the only allowed form of pointer
(Required) arithmetic.

Message in log:

¢ Array indexing shall be the only allowed form of pointer arithmetic.

Note Warning on operations on pointers. (p+I, I+p and p-I, where p is a
pointer and I an integer). Can be turned to Off.

17.6 The address of an object with automatic storage shall not be
(Required) assigned to an object that may persist after the object has
ceased to exist.

11-50

Rules Partially Supported

Description

Message in log:
® Pointer to a parameter is an illegal return value. Pointer to a local is an
illegal return value.

Note Warning when returning a local variable address or a parameter
address. Can be turned to Off.

Preprocessing Directives

Rule Description
19.4 C macros shall only expand to a braced initializer, a
(Required) constant, a parenthesized expression, a type qualifier, a

storage class specifier, or a do-while-zero construct.

Message in log:

® Macro ‘<name>" does not expand to a compliant construct.

11-51

11 MISRA® Checker

11-52

Rule Description

Note We assume that a macro definition does not violate this rule when it
expands to:

® a braced construct (not necessarily an initializer)

® a parenthesized construct (not necessarily an expression)

® a number

® a character constant

® a string constant (can be the result of the concatenation of string field
arguments and literal strings)

¢ the following keywords: typedef, extern, static, auto, register, const,
volatile, _ asm__ and _ inline__

a do-while-zero construct

Can be turned to Off.

19.15 Precautions shall be taken in order to prevent the contents
(Required) of a header file being included twice.

Message in log:
® Precautions shall be taken in order to prevent multiple inclusions.

Rules Partially Supported

Rule Description

Note When a header file is formatted as follows:

#ifndef <control macro>
#define <control macro>
<contents>

#endif

It is assumed that precautions have been taken to prevent multiple
inclusions. Otherwise, a violation of this MISRA rule is detected.

Can be turned to Off.

11-53

11 MISRA® Checker

Rules Not Checked

In this section...

“Environment” on page 11-54
“Language Extensions” on page 11-55
“Documentation” on page 11-55
“Types” on page 11-56

“Functions” on page 11-57

“Pointers and Arrays” on page 11-57
“Structures and Unions” on page 11-58

“Standard Libraries” on page 11-58

Environment
Rule Description Comments
1.2 No reliance shall be placed Not statically checkable
(Required) | on undefined or unspecified unless the data dynamic
behavior properties is taken into
account
1.3 Multiple compilers and/or It is a process rule method.
(Required) | languages shall only be

used if there is a common
defined interface standard

for object code to which the
language/compilers/assemblers

conform.

11-54

Rules Not Checked

Description

Comments

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

Language Extensions

Rule Description Comments

2.4 Sections of code should not be | It might be some pseudo code

(Advisory) | “commented out” or code that does not compile

inside a comment.

Documentation

Rule Description Comments

3.1 All usage of The documentation of

(Required) | implementation-defined compiler must be checked.

behavior shall be documented.

Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.

11-55

11 MISRA® Checker

Description

Comments

Documentation can not
be checked.

3.2
(Required)

The character set and the
corresponding encoding shall
be documented.

The documentation of
compiler must be checked.

3.3
(Advisory)

The implementation of
integer division in the
chosen compiler should be
determined, documented and
taken into account.

The documentation of
compiler must be checked.

3.4
(Required)

All uses of the #pragma
directive shall be documented
and explained.

The documentation of
compiler must be checked.

3.5
(Required)

The implementation-defined
behavior and packing of
bitfields shall be documented
if being relied upon.

The documentation of
compiler must be checked.

3.6
(Required)

All libraries used in
production code shall be
written to comply with the
provisions of this document,
and shall have been subject to
appropriate validation.

The documentation of
compiler must be checked.

Types

6.2
(Required)

11-56

Description

Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

Comments

Consider an external function
returning a char is been used
and increased. There is no
mean without the functional

Rules Not Checked

Rule Description Comments
knowledge that this function
stores a character value or
Note this rule is partially not.
implemented in Rule 6.1.
Functions
Rule Description Comments
16.7 A pointer parameter in a Not statically checkable
(Advisory) | function prototype should be | unless the pointer verification
declared as pointer to const has been done.
if the pointer is not used to
modify the addressed object.
16.10 If a function returns error Not statically checkable
(Required) | information, then that error | unless type defining error is

information shall be tested.

standardized.

Pointers and Arrays

Rule Description Comments
17.1 Pointer arithmetic shall only | Not statically checkable
(Required) | be applied to pointers that unless the pointer verification
address an array or array has been done
element.
17.2 Pointer subtraction shall only | Not statically checkable
(Required) | be applied to pointers that unless the pointer verification
address elements of the same | has been done
array.
17.3 >, >=, <, <= ghall not be Not statically checkable
(Required) | applied to pointer types unless the pointer verification

except where they point to the
same array.

has been done

11-57

11 MISRA® Checker

Structures and Unions

Rule Description Comments

18.2 An object shall not be assigned | Not statically checkable

(Required) | to an overlapping object. unless the data dynamic
properties is taken into
account

18.3 An area of memory shall "purpose" is functional design

(Required) | not be reused for unrelated issue.

purposes.
Standard Libraries

Rule Description Comments

20.3 The validity of values passed | Not statically checkable

(Required) | to library functions shall be unless all library function are

checked.

standardized

11-58

Using PolySpace Software
in the Eclipse IDE

12 Using PolySpace® Software in the Eclipse™ IDE

12-2

Verifying Code in the Eclipse IDE

In this section...

“Creating an Eclipse Project” on page 12-3
“Setting Up PolySpace Verification with Eclipse Editor” on page 12-4
“Launching Verification from Eclipse Editor” on page 12-5

“Reviewing Verification Results from Eclipse Editor” on page 12-5

“Using the PolySpace Spooler” on page 12-6

You can apply the powerful code verification of PolySpace software to code that
you develop within the Eclipse Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Eclipse™ editor to create an Eclipse project and develop code
within your project.

2 Set up the PolySpace verification by configuring analysis options and
settings.

3 Start the verification and monitor the process.

4 Review the verification results.

Install the PolySpace plug-in for Eclipse IDE before you verify code in
Eclipse IDE. For more information, see “PolySpace Plug-In Requirements”
and “Installing the PolySpace Plug-In for Eclipse IDE” in the PolySpace
Installation Guide.

Once you have installed the plug-in, in the Eclipse editor, you have access to:

¢ A PolySpace menu

¢ Toolbar buttons you use to launch a verification and open the PolySpace
spooler

¢ PolySpace Log and PolySpace Setting views

Verifying Code in the Eclipse™ IDE

& C/C++ - Demo_C/main.c - Eclipse Platform - |=lx|
File Edit Refactor Navigate Search Project Run | PolySpace Window Help
.] E—_ e = o w
Irie o m | 23 | &~ & | T StertPoyspaceVerification Cub4s g o [0 L e e - i [@oces
— €03 stop Local Verification = — =
[T Project Explorer 53 B | (&) maine &3 [Configure Project O[5 outin 52 Makﬂ]
=] <==?>| ¢ #inelud (3 gpen Spogler =L BV e ¥
£ Demo_C =f|f #2eeed F ooen Verification Results = indude.h
B il Tndudes & single_fle_snalysis.h
F (= Debug /7 Inte show PolySpace Log view 4 interpolationveid) : int
(i) example.c /= Meed Show PolySpace Settings view ; ++ main(void) : void
(1 indude.n static ! - ® % interpolation(void) : int
2} I@ initialisations.c Eidimainizoid)ls g main{void) : void
(-g] main.c
B[R] math.h
-] single_file_analysis.c . .
[single_fle_analysis.h static int interpolation(void)
[[H] single_fle_private.h E o
T tasksic int i, item=0;
I8 tasks2.c int found=false; i
- [#] pemo_c.cfa
- |=| misra-rules.msr L R R
|= real_expected_colours for (1=0; 1< _SIZE; 144} A -
5] temporal_exclusions. tt Y
B .Jpc Demo_Cpp if ((found==false)&& (*arr>1l€))
) Incudes u
g Debug found=true:
- [€) analyzer.cop irem=l:
& [B] analyzer.h .
5[controller.cpp C
[contraller.h - 3117‘0:
-8 dlobal_c.cpp return item;
= [H global_ch) -
(- [B] icontraller.h iI L'_I
B[] indude.h
2} @ initializations. cpp [L Prablems (Z. Tasks (ﬂ Properties (J PaolySpace Log &2 =2 PolySpace Setﬁngsw =d
B [€] main.cop =
- [€] matrix.cop | Comnpile : 0% | Intermediate | 0% Leveld : 0% ‘ Levell i 0% ‘ Levelz : 0% | Leveld : 0% | Leveld i 0% ‘ Level » 4 —
@[5 matrixh 4 | _»l_l
- [£] multiderived.cop e
-8 mutiderived.h Ssarchi A4 | A bt
&l [€) receiver.cop st | st Description File | tne | ca
E} @ rece\.ver‘h = @ Full Log
4| | >
mé
J | ‘ Read-Only | Smart Insert | 1:1 J

Creating an Eclipse Project

If your source files do not belong to an Eclipse project, then create one using

the Eclipse editor:

1 Select File > New > C Project.

2 Clear the Use default location check box.

3 Click Browse to navigate to the folder containing your source files, for

example, C:\Test\Source_c.

4 In the Project name field, enter a name, for example, Demo_C.

12-3

12 Using PolySpace® Software in the Eclipse™ IDE

12-4

5 In the Project Type tree, under Executable, select Empty Project .
6 Under Toolchains, select your installed toolchain, for example, MinGW GCC.
7 Click Finish. An Eclipse project is created.

For information on developing code within Eclipse IDE, refer to
www.eclipse.org.

Setting Up PolySpace Verification with Eclipse Editor
Analysis Options

To specify analysis options for your verification:

1 In Project Explorer, select the project or files that you want to verify.

2 Select PolySpace > Configure Project to open the PolySpace Launcher
for C window.

3 Under Analysis options, select your options for the verification process.
4 Save your options.

For information on how to choose your options, see “Options Description” in
the PolySpace Products for C Reference Guide

Note Your Eclipse compiler options for include paths (-I) and symbol
definitions (-D) are automatically added to the list of PolySpace analysis

options.

To view the -I and -D options in the Eclipse editor :

1 Select Project > Properties to open the Properties for Project dialog box.
2 In the tree, under C/C++ General , select Paths and Symbols .

3 Select Includes to view the -I options or Symbols to view the -D options.

http://www.eclipse.org

Verifying Code in the Eclipse™ IDE

Other Settings
In the PolySpace Settings view, specify:

¢ In the Results folder field, the location of your results folder .

¢ The required Verification level, for example, Level4.
You can also do the following in the PolySpace Settings view :

® Generate a main (if the item you select does not contain one) by
selecting the Generate a main check box. If you want to change
the default behavior of the main generator, specify advanced
settings through the -main-generator-writes-variables and
-main-generator-calls options in the PolySpace Launcher for C window.
Select PolySpace > Configure Project to open this window.

¢ Specify the -function-called-before-main option. In the Startup
function to call field, enter the name of the function that you want to call
before all selected functions in main.

Launching Verification from Eclipse Editor
To launch a PolySpace verification from the Eclipse editor:

1 Select the file, files, or class that you want to verify.

2 KEither right-click and select Start PolySpace Verification, or select
PolySpace > Start PolySpace Verification.

You can see the progress of the verification in the PolySpace Log view. If
you see an error or warning, double-click it to go to the corresponding location
in the source code.

To stop a verification, select PolySpace > Stop Local Verification.

For more information on monitoring the progress of a verification, see Chapter
6, “Running a Verification” in the PolySpace Products for C User Guide.

Reviewing Verification Results from Eclipse Editor
Use the PolySpace Viewer to examine results of the verification:

12-5

12 Using PolySpace® Software in the Eclipse™ IDE

12-6

1 Select PolySpace > Open Verification Results to open the PolySpace
Viewer.

2 If results are available in the specified Results folder, then these results
appear automatically in the Viewer window.

For information on reviewing and understanding PolySpace verification
results, see Chapter 8, “Reviewing Verification Results” in the PolySpace

Products for C User Guide.

Using the PolySpace Spooler
Use the PolySpace spooler to manage jobs running on remote servers. To open
the spooler, select PolySpace > Open Spooler .

For more information, see “Managing Verification Jobs Using the PolySpace
Queue Manager” on page 6-7 in the PolySpace Products for C User Guide.

Glossary

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error
See "red check.”

Check
A test performed by PolySpace during a verification and subsequently
colored red, orange, green or gray in the viewer.

Code verification
The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Dead Code

Code which is inaccessible at execution time under all circumstances
due to the logic of the software executed prior to it.

Development Process
The process used within a company to progress through the software

development lifecycle.

Green check
Code has been proven to be free of runtime errors.

Glossary-1

Glossary

Glossary-2

Gray check

Unreachable code; dead code.

Imprecision
Approximations are made during a PolySpace verification, so data
values possible at execution time are represented by supersets including
those values.

mcpu
Micro Controller/Processor Unit

Orange check
A warning that represents a possible error which may be revealed upon
further investigation.

PolySpace Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output from PolySpace during verification to indicate what proportion
of the verification has been completed. Could be considered as a “textual
progress bar”.

Red check
Code has been proven to contain definite runtime errors (every
execution will result in an error).

Review
Inspection of the results produced by a PolySpace verification.

Scaling option
Option applied when an application submitted to PolySpace proves to be
bigger or more complex than is practical.

Glossary

Selectivitiy
The ratio (green checks + gray checks + red checks) / (total amount of
checks)

Unreachable code
Dead code.

Verification

The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Glossary-3

Glossary

Glossary-4

A

access sequence graph 8-41
acronyms, user defined 8-49
active project
definition 10-3
setting 10-3
analysis options 3-15 3-19
generic targets 3-33 4-9
MISRA C compliance 3-25 11-4
ANSI compliance 6-3
assistant mode
criterion 8-27
custom methodology 8-30
methodology 8-27
methodology for C 8-27 to 8-28
overview 8-26
reviewing checks 8-32
selection 8-26
use 8-26 8-32

C

call graph 8-40
call tree view 8-13
calling sequence 8-40
cfg. See configuration file
client 1-6 6-2
installation 1-6
verification on 6-22
Client
overview 1-6
code view 8-17
coding review progress view 8-13 8-48
color-coding of verification results 1-3 8-15
compile
log 7-8
compile log
Launcher 6-24
Spooler 6-7
compile phase 6-3

compliance
ANSI 6-3
MISRA C 1-2 3-25 11-4
composite filters 8-44
configuration file
definition 3-2
contextual verification 2-5
criteria
quality 2-8
custom methodology
definition 8-30

D

data range specifications 2-6
default folder
changing in preferences 3-6
desktop file
definition 3-2
downloading
results 8-8
results using command line 8-11
unit-by-unit verification results 8-12
DRS 2-6
dsk. See desktop file

error call graph 8-40
expert mode
filters 8-42
composite 8-44
individual 8-43
overview 8-36
selection 8-36
use 8-36

F

files
includes 3-9 3-12 3-14

Index-1

Index

results 3-9 3-12 3-14
source 3-9 3-12 3-14
filters 8-42
alpha 8-44
beta 8-44
custom
modification 8-44
use 8-44
gamma 8-44
individual 8-43
user def 8-44
folders
includes 3-9 3-12 3-14
results 3-9 3-12 3-14
sources 3-9 3-12 3-14

G

generic target processors
adding 3-32
definition 3-33 4-9
deleting 3-36 4-12

global variable graph 8-41

H

hardware requirements 7-2

help
accessing 1-8

|

installation
PolySpace Client for C/C++ 1-6
PolySpace products 1-6
PolySpace Server for C/C++ 1-6

L

Launcher

monitoring verification progress 6-24

Index-2

opening 3-3
starting verification on client 6-22
starting verification on server 6-3
viewing logs 6-24
window 3-3
overview 3-3
progress bar 6-24
level
quality 2-8
licenses
obtaining 1-6
logs
compile
Launcher 6-24
Spooler 6-7
full
Launcher 6-24
Spooler 6-7
stats
Launcher 6-24
Spooler 6-7
viewing
Launcher 6-24
Spooler 6-7

M

methodology for C 8-27 to 8-28
MISRA C compliance 1-2
analysis option 3-25 11-4
checking 3-25 11-4
file exclusion 3-29 11-7
log 11-12
rules file 3-27 11-5

o

objectives
quality 2-5

Index

P

PolySpace Client
overview 1-6
PolySpace Client for C/C++
installation 1-6
license 1-6
PolySpace In One Click
active project 10-3
overview 10-2
sending files to PolySpace software 10-5
starting verification 10-5
use 10-2
PolySpace products for C
components 1-6
installation 1-6
licenses 1-6
overview 1-2
related products 1-6
user interface 1-6
PolySpace project model file
creation 3-32
definition 3-32
use 3-31
PolySpace Queue Manager Interface. See Spooler
PolySpace Server
overview 1-6
PolySpace Server for C/C++
installation 1-6
license 1-6
ppm. See PolySpace project model file
preferences
Launcher
default folder 3-6
default server mode 6-3
generic targets 3-32
server detection 7-4
Viewer
Acronyms 8-49
assistant configuration 8-28
preprocessed files

troubleshooting with 7-9
procedural entities view 8-13 8-15
reviewed column 8-51
product overview 1-2
progress bar
Launcher window 6-24
project
creation 3-2
definition 3-2
file types
configuration file 3-2
desktop file 3-2
PolySpace project model file 3-2
folders
includes 3-3
results 3-3
sources 3-3
saving 3-18
project model file. See PolySpace project model
file

Q

quality level 2-8
quality objectives 2-5 3-19

related products 1-6
PolySpace products for linking to Models 1-7
PolySpace products for verifying Ada
code 1-7
PolySpace products for verifying C++
code 1-7
reports
generation 8-58
results
downloading from server 8-8
downloading using command line 8-11
folder 3-9 3-12 3-14

Index-3

Index

opening 8-12
report generation 8-58
unit-by-unit 8-12
reviewed column 8-51
reviewing results, acronyms 8-48 to 8-49
robustness verification 2-5
rte view. See procedural entities view

S

selected check view 8-13 8-19 8-48
server 1-6 6-2
detection 7-4
information in preferences 7-4
installation 1-6 7-4
verification on 6-3
Server
overview 1-6
source code view 8-13 8-17
Spooler
monitoring verification progress 6-7
removing verification from queue 8-8
use 6-7
viewing log 6-7

T

troubleshooting failed verification 7-2

\"

variables view 8-13 8-19 8-22
verification

Ada code 1-7

C code 1-2

C++ code 1-7

client 6-2

compile phase 6-3

contextual 2-5

Index-4

failed 7-2
monitoring progress
Launcher 6-24
Spooler 6-7
phases 6-3
results
color-coding 1-3
opening 8-12
report generation 8-58
reviewing 8-8
robustness 2-5
running 6-2
running on client 6-22
running on server 6-3
starting
from Launcher 6-2 to 6-3 6-22

from PolySpace In One Click 6-2 10-5

stopping 6-25

troubleshooting 7-2

with MISRA C checking 11-11

Viewer

modes
selection 8-23

opening 8-12

window
call tree view 8-13
coding review progress view 8-13
overview 8-13
procedural entities view 8-13
selected check view 8-13
source code view 8-13
variables view 8-13

w

workflow
setting quality objectives 2-5

	toc
	Introduction to PolySpace Products
	Introduction to PolySpace Products
	The Value of PolySpace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve the Development Process

	How PolySpace Verification Works
	What is Static Verification
	Exhaustiveness

	Product Components
	PolySpace Client for C/C++ Software
	PolySpace Server for C/C++ Software

	Installing PolySpace Products
	Related Products
	PolySpace Products for Verifying C++ Code
	PolySpace Products for Verifying Ada Code
	PolySpace Products for Linking to Models

	PolySpace Documentation
	About this Guide
	Related Documentation
	The MathWorks Online

	How to Use PolySpace Software
	PolySpace Verification and the Software Development Cycle
	Software Quality and Productivity
	Best Practices for Verification Workflow

	Implementing a Process for PolySpace Verification
	Overview of the PolySpace Process
	Defining Quality Objectives
	Choosing Robustness or Contextual Verification
	Choosing Coding Rules
	Choosing Strict or Permissive Verification Objectives
	Defining Software Quality Levels

	Defining a Verification Process to Meet Your Objectives
	Applying Your Verification Process to Assess Code Quality
	Improving Your Verification Process

	Sample Workflows for PolySpace Verification
	Overview of Verification Workflows
	Software Developers and Testers – Standard Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Software Developers and Testers – Rigorous Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Code Acceptance Criteria
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Certification/Qualification
	User Description

	Model-Based Design Users — Verifying Generated Code
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Project Managers — Integrating PolySpace Verification with Confi
	User Description
	Quality Objectives
	Verification Workflow

	Setting Up a Verification Project
	Creating a Project
	What Is a Project?
	Project Folders
	Opening PolySpace Launcher
	Specifying Default Folder
	Creating New Projects
	Opening Existing Projects
	Specifying Source Files
	Specifying Include Folders
	Specifying Results Folder
	Specifying Analysis Options
	Configuring Text and XML Editors
	Saving the Project

	Specifying Options to Match Your Quality Objectives
	Quality Objectives Overview
	Choosing Contextual Verification Options
	Choosing Strict or Permissive Verification Options
	Choosing Coding Rules

	Setting Up Project to Check Coding Rules
	PolySpace MISRA Checker Overview
	Checking Compliance with MISRA C Coding Rules
	Creating a MISRA C Rules File
	Opening a New Rules File

	Excluding Files from the MISRA C Checking

	Setting Up Project for Generic Target Processors
	Project Model Files
	What Is a PolySpace Project Model File?
	Workflow for Using Project Model Files

	Creating Project Model Files
	Viewing Existing Generic Targets
	Defining Generic Targets
	Deleting a Generic Target
	Creating a Configuration File from a PolySpace Project Model Fil

	Setting up Project to Automatically Test Orange Code
	PolySpace Automatic Orange Tester
	Enabling the Automatic Orange Tester

	Emulating Your Runtime Environment
	Setting Up a Target
	Target/Compiler Overview
	Specifying Target/Compilation Parameters
	Predefined Target Processor Specifications
	Modifying Predefined Target Processor Attributes
	Defining Generic Target Processors
	Common Generic Targets
	Viewing Existing Generic Targets
	Deleting a Generic Target
	Compiling Operating System Dependent Code (OS-target issues)
	List of Predefined Compilation Flags
	My Target Application Runs on Linux
	My Target Application Runs on Solaris
	My Target Application Runs on Vxworks
	My Target Application Does Not Run on Linux, vxworks nor Solaris

	Address Alignment
	Ignoring or Replacing Keywords Before Compilation
	Content of the myTpl.pl file
	Perl Regular Expression Summary

	Verifying Code That Uses KEIL or IAR Dialects
	How to Gather Compilation Options Efficiently
	Example

	Verifying an Application Without a “Main”
	Main Generator Overview
	PolySpace Client for C/C++ Software Default Behavior
	PolySpace Server for C/C++ Software Default Behavior

	Automatically Generating a Main
	Manually Generating a Main
	Main Generator Assumptions

	Specifying Data Ranges for Variables and Functions (Contextual V
	Overview of Data Range Specifications (DRS)
	Specifying Data Ranges Using DRS Template
	DRS Configuration Settings
	Specifying Data Ranges Using Existing DRS Configuration
	Editing Existing DRS Configuration
	Specifying Data Ranges Using Text Files
	DRS Text File Format
	Tips for Creating DRS Text Files
	Example DRS Text File

	Variable Scope
	DRS Support for Structures
	DRS Support for Union Members

	Performing Efficient Module Testing with DRS
	Reducing Oranges with DRS
	Why Is DRS Most Effective on Module Testing?
	Example

	Preparing Source Code for Verification
	Stubbing
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding Which Stub Functions to Provide
	Example
	Summary

	Adding Precision Constraints Using Stubs
	Default and Alternative Behavior for Stubbing (PURE and WORST)
	Stubbing Examples
	Function Pointer Cases
	Stubbing Functions with a Variable Argument Number
	Finding Bugs in _polyspace_stdstubs.c
	Example

	Preparing Code for Variables
	Assigning Ranges to Variables/Assert?
	Abstract
	Explanation
	Solution

	Checking Properties on Global Variables: Global Assert
	Modeling Variable Values External to Your Application
	Initializing Variables
	External
	Volatile
	Absolute Addressing

	Verifying Code with Undefined or Undeclared Variables and Functi
	Definition
	Declaration

	Preparing Code for Built-In Functions
	Preparing Multitasking Code
	PolySpace Software Assumptions
	Modelling Synchronous Tasks
	Solution 1
	Solution 2
	Modelling Interruptions and Asynchronous Events, Tasks, andThrea
	Solution 1: Where Interrupts (ISRs) Cannot Ppreempt Each Other
	Solution 2: Where Interrupts Can Preempt Each Other
	Are Interruptions Maskable or Preemptive by Default?
	Shared Variables
	Critical Sections
	Original Code
	File Replacing the Original Include File
	Command Line to Launch PolySpace
	Mutual Exclusion
	Semaphores

	Mailboxes
	Atomicity (Can an Instruction Be Interrupted by Another?)
	Priorities

	Highlighting Known Coding Rule Violations and Run-Time Errors
	Annotating Code to Indicate Known Coding Rule Violations
	Syntax for Coding Rule Violations

	Annotating Code to Indicate Known Run-Time Errors
	Syntax for Run-Time Errors

	Verifying “Unsupported” Code
	Ignoring Assembly Code
	Example: Ignore All Statements; the Rest of the Function Remains
	Example: Automatic Stubbing
	Examples: Empty Body
	Example: #asm and #endasm Support
	Example: What to Do If -discard-asm Fails to Parse an asm Code S

	Dealing with Backward “goto” Statements
	Types Promotion
	Unsigned Integers Promoted to Signed Integers
	What are the Promotions Rules in Operators?
	Example

	Running a Verification
	Types of Verification
	Running Verifications on PolySpace Server
	Starting Server Verification
	What Happens When You Run Verification
	Running Verification Unit-by-Unit
	Managing Verification Jobs Using the PolySpace Queue Manager
	Monitoring Progress of Server Verification
	Viewing Verification Log File on Server
	Stopping Server Verification Before It Completes
	Removing Verification Jobs from Server Before They Run
	Changing Order of Verification Jobs in Server Queue
	Purging Server Queue
	Changing Queue Manager Password
	Sharing Server Verifications Between Users
	Security of Jobs in Server Queue
	analysis-keys.txt File
	Example:
	Sharing Verifications Between Accounts
	Magic Key to Share Verifications
	If analysis-keys.txt File is Lost or Corrupted

	Running Verifications on PolySpace Client
	Starting Verification on Client
	What Happens When You Run Verification
	Monitoring the Progress of the Verification
	Stopping Client Verification Before It Completes

	Running Verifications from Command Line
	Launching Verifications in Batch
	Managing Verifications in Batch

	Troubleshooting Verification Problems
	Verification Process Failed Errors
	Messages Described in This Section
	Hardware Does Not Meet Requirements
	Message
	Cause
	Solution

	You Did Not Specify the Location of Included Files
	Message
	Cause
	Solution

	PolySpace Software Cannot Find the Server
	Message
	Cause
	Solution

	Limit on Assignments and Function Calls
	Message
	Cause
	Solution

	Compilation Errors
	Overview
	Configuring a Text Editor
	Examining the Compile Log
	Compiler Messages Described in This Section
	Syntax Error
	Message
	Code Used
	Solution

	Undeclared Identifier
	Message
	Code Used
	Solution

	No Such File or Folder
	Messages
	Code Used
	Solution

	#error directive
	Message
	Code Used
	Solution

	Errors Resulting from Unsupported Non-ANSI Keywords Such as @int

	Link Errors and Warnings
	Overview
	Examining Preprocessed Code

	Function: Wrong Argument Type
	PolySpace Output
	Solution

	Function: Wrong Argument Number
	PolySpace Output
	Solution

	Variable: Wrong Type
	PolySpace Output
	Solution

	Variable: Signed/Unsigned
	PolySpace Output
	Solution

	Variable: Different Qualifier
	PolySpace Output
	Solution

	Variable: Array Against Variable
	PolySpace Output
	Solution

	Variable: Wrong Array Size
	PolySpace Output
	Solution

	Missing Required Prototype for varargs
	PolySpace Output
	Solution

	Stubbing Errors
	Conflicts Between Standard Library Functions and PolySpace Stubs
	_polyspace_stdstubs.c Compilation Errors
	Example 1
	Example 2
	Example 3
	General Troubleshooting Approaches
	Restart with the -I option
	Include Files with Stubs to Replace Automatic Stubbing
	Create a _polyspace_stdstubs.c File with Necessary Includes
	Provide a .c file Containing a Prototype Function
	Ignore _polyspace_stdstubs.c

	Automatic Stub Creation Errors
	Three Types of Error Messages
	Function Pointer Error
	Message
	Solutions

	Unknown Prototype Error
	Message
	Solution

	Parameter -entry-points Error
	Message
	Solution

	Reducing Verification Time
	Factors Impacting Verification Time
	Displaying Verification Status Information
	Techniques for Improving Verification Performance
	Standard Scaling Options Flow Chart
	Reducing Code Complexity

	Turning Antivirus Software Off
	Tuning PolySpace Parameters
	Impact of Parameter Settings
	Recommended Parameter Tuning

	Subdividing Code
	An Ideal Application Size
	Benefits of Subdividing Code
	Possible Issues with Subdividing Code
	Recommended Approach
	Selecting a Subset of Code
	Example 1
	Example 2
	Example 3

	Reducing Procedure Complexity
	Reducing Task Complexity
	Reducing Variable Complexity
	Choosing Lower Precision

	Obtaining Configuration Information
	Removing Preliminary Results Files

	Reviewing Verification Results
	Before You Review PolySpace Results
	Overview: Understanding PolySpace Results
	Why Gray Follows Red and Green Follows Orange
	Summary

	The Message and What It Means
	Explanation
	Summary

	The C Explanation
	Summary

	Opening Verification Results
	Downloading Results from Server to Client
	Downloading Server Results Using Command Line
	Downloading Results from Unit-by-Unit Verifications
	Opening Verification Results
	Exploring the Viewer Window
	Overview
	Procedural Entities View
	Source Code View
	Coding Review Progress View
	Selected Check View
	Variables View
	Call Tree View

	Selecting Viewer Mode
	Searching Results in Viewer
	Setting Character Encoding Preferences

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for C
	Defining a Custom Methodology
	Reviewing Checks
	Saving Review Comments

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Selecting a Check to Review
	Displaying the Call Sequence for a Check
	Displaying the Access Graph for Variables
	Filtering Checks
	Types of Filters
	Individual Filters
	Composite Filters
	Custom Filters

	Creating a Custom Filter
	Saving Review Comments

	Tracking Review Progress
	Checking Coding Review Progress
	Reviewing and Commenting Checks
	Defining Custom Acronyms
	Tracking Reviewed Checks in Procedural Entities View

	Importing and Exporting Review Comments
	Reusing Review Comments
	Exporting Review Comments to Other Verification Results
	Importing Review Comments from Previous Verifications
	Viewing Checks and Comments Report

	Generating Reports of Verification Results
	PolySpace Report Generator Overview
	Generating Verification Reports
	Running the Report Generator from the Command Line
	-template path
	-format type
	-help or -h
	-noview
	-output-name filename
	-results-dir folder_paths

	Automatically Generating Verification Reports
	Generating Excel Reports

	Using PolySpace Results
	Review Runtime Errors: Fix Red Errors
	Red Checks Where Gray Checks were Expected
	Using Range Information in the Viewer
	Viewing Range Information
	Interpreting Range Information
	Diagnosing Errors with Range Information

	Using Pointer Information in the Viewer
	Messages on Dereferences
	Variables in Structures

	Why Review Dead Code Checks
	Functional Bugs in Gray Code
	Structural Coverage

	Reviewing Orange Checks
	Integration Bug Tracking
	How to Find Bugs in Unprotected Shared Data
	Dataflow Verification
	Data and Coding Rules
	Potential Side Effect of a Red Error
	Relationships Between Variables
	Abstract
	Explanation 1
	Explanation 2
	Summary

	Two Distinct Colors in a while/for Statement

	Managing Orange Checks
	Understanding Orange Checks
	What is an Orange Check?
	Sources of Orange Checks
	Orange Checks Due to Code Issues
	Orange Checks Due to Tool Issues

	Too Many Orange Checks?
	Do I Have Too Many Orange Checks?
	How to Manage Orange Checks

	Reducing Orange Checks in Your Results
	Overview: Reducing Orange Checks
	Applying Coding Rules to Reduce Orange Checks
	Set of Coding Rules with a Direct Impact on Selectivity
	Set of Coding Rules with an Indirect Impact on Selectivity

	Considering Generated Code
	Improving Verification Precision
	Balancing Precision and Verification Time
	Setting the Analysis Precision Level
	Setting Software Safety Analysis Level
	Example: Orange Checks and Software Safety Analysis Level
	Other Options that Can Improve Precision

	Stubbing Parts of the Code Manually
	Manual vs. Automatic Stubbing
	Stubbing Example
	Emulating Function Behavior with Manual Stubs
	Example

	Describing Multitasking Behavior Properly
	Considering Contextual Verification

	Reviewing Orange Checks
	Overview: Reviewing Orange Checks
	Defining Your Review Methodology
	Performing Selective Orange Review
	Importing Review Comments from Previous Verifications
	Commenting Code to Provide Information During Review
	Working with Orange Checks Caused by Input Data
	Filtering Orange Checks Caused by Inputs
	Additional Information on Orange Checks Caused by Inputs

	Performing an Exhaustive Orange Review
	Cost of Exhaustive Orange Review
	Exhaustive Orange Review Methodology
	Inconclusive Verification and Code Complexity
	Resolving Orange Checks Caused by Basic Imprecision

	Automatically Testing Orange Code
	Automatic Orange Tester Overview
	How the Automatic Orange Tester Works
	Limitations of Dynamic Testing

	Before Using the Automatic Orange Tester
	Launching the Automatic Orange Tester
	Reviewing the Test Results
	Test Campaign Results
	Results Table
	Log

	Refining Data Ranges
	Saving and Reusing Your Configuration
	Exporting Data Ranges for PolySpace Verification
	Configuring Compiler Options
	Technical Limitations
	Unsupported PolySpace Options
	Options with Limitations
	Unsupported C Language Constructions

	Day to Day Use
	PolySpace In One Click Overview
	Using PolySpace In One Click
	PolySpace In One Click Workflow
	Setting the Active Project
	Launching Verification
	Using the Taskbar Icon

	MISRA Checker
	PolySpace MISRA Checker Overview
	Setting Up MISRA C Checking
	Checking Compliance with MISRA C Coding Rules
	Creating a MISRA C Rules File
	Opening a New Rules File

	Excluding Files from the MISRA C Checking
	Configuring Text and XML Editors
	Commenting Code to Indicate Known Rule Violations

	Running a Verification with MISRA C Checking
	Starting the Verification
	Examining the MISRA C Log
	Opening MISRA-C Report

	Rules Supported
	Language Extensions
	Character Sets
	Identifiers
	Types
	Constants
	Declarations and Definitions
	Initialization
	Arithmetic Type Conversion
	Pointer Type Conversion
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessing Directives
	Standard Libraries
	runtime Failures

	Rules Partially Supported
	Environment
	Language Extension
	Declarations and Definitions
	Expressions
	Control Statement Expressions
	Control Flow
	Functions
	Pointers and Arrays
	Preprocessing Directives

	Rules Not Checked
	Environment
	Language Extensions
	Documentation
	Types
	Functions
	Pointers and Arrays
	Structures and Unions
	Standard Libraries

	Using PolySpace Software in the Eclipse IDE
	Verifying Code in the Eclipse IDE
	Creating an Eclipse Project
	Setting Up PolySpace Verification with Eclipse Editor
	Analysis Options
	Other Settings

	Launching Verification from Eclipse Editor
	Reviewing Verification Results from Eclipse Editor
	Using the PolySpace Spooler

	Glossary
	Index

	tables
	Software Quality Levels
	Examples of Common Run-Time Errors
	Predefined Target Processor Specifications
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny
	Example: -dialect keil -sfr-types sfr=8
	Example: -dialect iar -sfr-types sfr=8

